5G microstrip patch antenna and microwave dielectric properties of 4 mol%LiF–MgO–xwt%MTiO3 (M = Ca, Sr) composite ceramics
The combination of low dielectric constant ( ε r ) and a high-quality factor ( Q × f ) in MgO ceramics makes them attractive for 5G applications. However, the large negative temperature coefficient of resonance frequency ( τ f ) impedes these applications. In this paper, the composite ceramics of...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in electronics 2021-10, Vol.32 (19), p.23880-23888 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 23888 |
---|---|
container_issue | 19 |
container_start_page | 23880 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 32 |
creator | Zhu, Shengkai Huang, Zhichao Lou, Weichao Song, Kaixin Khesro, Amir Hussain, Fayaz Tan, Zhenyu Luo, Xinjiang Mao, Minmin Xue, Lingyun Xu, Ping Liu, Bing Lin, Huixing Wang, Dawei |
description | The combination of low dielectric constant (
ε
r
) and a high-quality factor (
Q
×
f
) in MgO ceramics makes them attractive for 5G applications. However, the large negative temperature coefficient of resonance frequency (
τ
f
) impedes these applications. In this paper, the composite ceramics of MgO–
x
MTiO
3
(M = Ca, Sr;
x
= 0, 2.5, 5, 7.5, 10 wt%) with the addition of 4 mol% LiF as a sintering aid were fabricated by the traditional solid-state reaction method. The coexistence both MgO and MT phases can be observed in XRD and SEM in the 4 mol% LiF–MgO–wt%MTiO
3
systems under the high-temperature sintering process. With the addition of MT, the grain size of MgO decreased, the
ε
r
value improved with
τ
f
value gradually increasing from negative to positive value. Optimized microwave dielectric properties were achieved for 4 mol%LiF–MgO–10wt%SrTiO
3
ceramics sintered at 1300 °C for 6 h, yielding
ε
r
= 11.2,
Q
×
f
= 46, 815 GHz, and
τ
f
= + 3.51 ppm/°C. Based on it, a prototype of microstrip patch antenna was designed and fabricated with a center frequency at 5.64 GHz for 5G–Sub6GHz communication applications. |
doi_str_mv | 10.1007/s10854-021-06826-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2577917287</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2577917287</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-2c4d0aea495b18e06352a31e6c60d358ba3e851aedf0f339b3ed50045fad773a3</originalsourceid><addsrcrecordid>eNp9kM9KxDAQxoMouP55AU8BERSsTpKmaQ8eZPEf7LIHFbyFbDrVym5bk66rN8GTZ1_AZ_FRfBKzVvDmYWYO833fDD9CthgcMAB16BmkMo6AswiSlCcRWyI9JpWI4pTfLJMeZFJFseR8lax5fw8ASSzSHnmVZ3RaWlf71pUNbUxr76ipWqwqE2beLefmEWle4gRtkFnauLpB15boaV3Q-PNjWk92BuXp18v78HYU-tO83RlelSNBd4dfL29Hofpmn166PWrraVP7skVq0ZkQ7zfISmEmHjd_5zq5Pj256p9Hg9HZRf94EFnBsjbiNs7BoIkzOWYpQiIkN4JhYhPIhUzHRmAqmcG8gEKIbCwwlwCxLEyulDBinWx3ueH9hxn6Vt_XM1eFk5pLpTKmeKqCineqBRTvsNCNK6fGPWsGegFbd7B1gK1_YGsWTKIz-SCubtH9Rf_j-gbnPoaS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2577917287</pqid></control><display><type>article</type><title>5G microstrip patch antenna and microwave dielectric properties of 4 mol%LiF–MgO–xwt%MTiO3 (M = Ca, Sr) composite ceramics</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zhu, Shengkai ; Huang, Zhichao ; Lou, Weichao ; Song, Kaixin ; Khesro, Amir ; Hussain, Fayaz ; Tan, Zhenyu ; Luo, Xinjiang ; Mao, Minmin ; Xue, Lingyun ; Xu, Ping ; Liu, Bing ; Lin, Huixing ; Wang, Dawei</creator><creatorcontrib>Zhu, Shengkai ; Huang, Zhichao ; Lou, Weichao ; Song, Kaixin ; Khesro, Amir ; Hussain, Fayaz ; Tan, Zhenyu ; Luo, Xinjiang ; Mao, Minmin ; Xue, Lingyun ; Xu, Ping ; Liu, Bing ; Lin, Huixing ; Wang, Dawei</creatorcontrib><description>The combination of low dielectric constant (
ε
r
) and a high-quality factor (
Q
×
f
) in MgO ceramics makes them attractive for 5G applications. However, the large negative temperature coefficient of resonance frequency (
τ
f
) impedes these applications. In this paper, the composite ceramics of MgO–
x
MTiO
3
(M = Ca, Sr;
x
= 0, 2.5, 5, 7.5, 10 wt%) with the addition of 4 mol% LiF as a sintering aid were fabricated by the traditional solid-state reaction method. The coexistence both MgO and MT phases can be observed in XRD and SEM in the 4 mol% LiF–MgO–wt%MTiO
3
systems under the high-temperature sintering process. With the addition of MT, the grain size of MgO decreased, the
ε
r
value improved with
τ
f
value gradually increasing from negative to positive value. Optimized microwave dielectric properties were achieved for 4 mol%LiF–MgO–10wt%SrTiO
3
ceramics sintered at 1300 °C for 6 h, yielding
ε
r
= 11.2,
Q
×
f
= 46, 815 GHz, and
τ
f
= + 3.51 ppm/°C. Based on it, a prototype of microstrip patch antenna was designed and fabricated with a center frequency at 5.64 GHz for 5G–Sub6GHz communication applications.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-021-06826-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Antenna design ; Ceramics ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Dielectric properties ; Grain size ; High temperature ; Lithium fluoride ; Magnesium oxide ; Materials Science ; Microstrip antennas ; Optical and Electronic Materials ; Patch antennas ; Sintering ; Sintering aids ; Strontium ; Strontium titanates</subject><ispartof>Journal of materials science. Materials in electronics, 2021-10, Vol.32 (19), p.23880-23888</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-2c4d0aea495b18e06352a31e6c60d358ba3e851aedf0f339b3ed50045fad773a3</citedby><cites>FETCH-LOGICAL-c319t-2c4d0aea495b18e06352a31e6c60d358ba3e851aedf0f339b3ed50045fad773a3</cites><orcidid>0000-0002-4622-1234</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-021-06826-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-021-06826-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zhu, Shengkai</creatorcontrib><creatorcontrib>Huang, Zhichao</creatorcontrib><creatorcontrib>Lou, Weichao</creatorcontrib><creatorcontrib>Song, Kaixin</creatorcontrib><creatorcontrib>Khesro, Amir</creatorcontrib><creatorcontrib>Hussain, Fayaz</creatorcontrib><creatorcontrib>Tan, Zhenyu</creatorcontrib><creatorcontrib>Luo, Xinjiang</creatorcontrib><creatorcontrib>Mao, Minmin</creatorcontrib><creatorcontrib>Xue, Lingyun</creatorcontrib><creatorcontrib>Xu, Ping</creatorcontrib><creatorcontrib>Liu, Bing</creatorcontrib><creatorcontrib>Lin, Huixing</creatorcontrib><creatorcontrib>Wang, Dawei</creatorcontrib><title>5G microstrip patch antenna and microwave dielectric properties of 4 mol%LiF–MgO–xwt%MTiO3 (M = Ca, Sr) composite ceramics</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>The combination of low dielectric constant (
ε
r
) and a high-quality factor (
Q
×
f
) in MgO ceramics makes them attractive for 5G applications. However, the large negative temperature coefficient of resonance frequency (
τ
f
) impedes these applications. In this paper, the composite ceramics of MgO–
x
MTiO
3
(M = Ca, Sr;
x
= 0, 2.5, 5, 7.5, 10 wt%) with the addition of 4 mol% LiF as a sintering aid were fabricated by the traditional solid-state reaction method. The coexistence both MgO and MT phases can be observed in XRD and SEM in the 4 mol% LiF–MgO–wt%MTiO
3
systems under the high-temperature sintering process. With the addition of MT, the grain size of MgO decreased, the
ε
r
value improved with
τ
f
value gradually increasing from negative to positive value. Optimized microwave dielectric properties were achieved for 4 mol%LiF–MgO–10wt%SrTiO
3
ceramics sintered at 1300 °C for 6 h, yielding
ε
r
= 11.2,
Q
×
f
= 46, 815 GHz, and
τ
f
= + 3.51 ppm/°C. Based on it, a prototype of microstrip patch antenna was designed and fabricated with a center frequency at 5.64 GHz for 5G–Sub6GHz communication applications.</description><subject>Antenna design</subject><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Dielectric properties</subject><subject>Grain size</subject><subject>High temperature</subject><subject>Lithium fluoride</subject><subject>Magnesium oxide</subject><subject>Materials Science</subject><subject>Microstrip antennas</subject><subject>Optical and Electronic Materials</subject><subject>Patch antennas</subject><subject>Sintering</subject><subject>Sintering aids</subject><subject>Strontium</subject><subject>Strontium titanates</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kM9KxDAQxoMouP55AU8BERSsTpKmaQ8eZPEf7LIHFbyFbDrVym5bk66rN8GTZ1_AZ_FRfBKzVvDmYWYO833fDD9CthgcMAB16BmkMo6AswiSlCcRWyI9JpWI4pTfLJMeZFJFseR8lax5fw8ASSzSHnmVZ3RaWlf71pUNbUxr76ipWqwqE2beLefmEWle4gRtkFnauLpB15boaV3Q-PNjWk92BuXp18v78HYU-tO83RlelSNBd4dfL29Hofpmn166PWrraVP7skVq0ZkQ7zfISmEmHjd_5zq5Pj256p9Hg9HZRf94EFnBsjbiNs7BoIkzOWYpQiIkN4JhYhPIhUzHRmAqmcG8gEKIbCwwlwCxLEyulDBinWx3ueH9hxn6Vt_XM1eFk5pLpTKmeKqCineqBRTvsNCNK6fGPWsGegFbd7B1gK1_YGsWTKIz-SCubtH9Rf_j-gbnPoaS</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Zhu, Shengkai</creator><creator>Huang, Zhichao</creator><creator>Lou, Weichao</creator><creator>Song, Kaixin</creator><creator>Khesro, Amir</creator><creator>Hussain, Fayaz</creator><creator>Tan, Zhenyu</creator><creator>Luo, Xinjiang</creator><creator>Mao, Minmin</creator><creator>Xue, Lingyun</creator><creator>Xu, Ping</creator><creator>Liu, Bing</creator><creator>Lin, Huixing</creator><creator>Wang, Dawei</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-4622-1234</orcidid></search><sort><creationdate>20211001</creationdate><title>5G microstrip patch antenna and microwave dielectric properties of 4 mol%LiF–MgO–xwt%MTiO3 (M = Ca, Sr) composite ceramics</title><author>Zhu, Shengkai ; Huang, Zhichao ; Lou, Weichao ; Song, Kaixin ; Khesro, Amir ; Hussain, Fayaz ; Tan, Zhenyu ; Luo, Xinjiang ; Mao, Minmin ; Xue, Lingyun ; Xu, Ping ; Liu, Bing ; Lin, Huixing ; Wang, Dawei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-2c4d0aea495b18e06352a31e6c60d358ba3e851aedf0f339b3ed50045fad773a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Antenna design</topic><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Dielectric properties</topic><topic>Grain size</topic><topic>High temperature</topic><topic>Lithium fluoride</topic><topic>Magnesium oxide</topic><topic>Materials Science</topic><topic>Microstrip antennas</topic><topic>Optical and Electronic Materials</topic><topic>Patch antennas</topic><topic>Sintering</topic><topic>Sintering aids</topic><topic>Strontium</topic><topic>Strontium titanates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Shengkai</creatorcontrib><creatorcontrib>Huang, Zhichao</creatorcontrib><creatorcontrib>Lou, Weichao</creatorcontrib><creatorcontrib>Song, Kaixin</creatorcontrib><creatorcontrib>Khesro, Amir</creatorcontrib><creatorcontrib>Hussain, Fayaz</creatorcontrib><creatorcontrib>Tan, Zhenyu</creatorcontrib><creatorcontrib>Luo, Xinjiang</creatorcontrib><creatorcontrib>Mao, Minmin</creatorcontrib><creatorcontrib>Xue, Lingyun</creatorcontrib><creatorcontrib>Xu, Ping</creatorcontrib><creatorcontrib>Liu, Bing</creatorcontrib><creatorcontrib>Lin, Huixing</creatorcontrib><creatorcontrib>Wang, Dawei</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Shengkai</au><au>Huang, Zhichao</au><au>Lou, Weichao</au><au>Song, Kaixin</au><au>Khesro, Amir</au><au>Hussain, Fayaz</au><au>Tan, Zhenyu</au><au>Luo, Xinjiang</au><au>Mao, Minmin</au><au>Xue, Lingyun</au><au>Xu, Ping</au><au>Liu, Bing</au><au>Lin, Huixing</au><au>Wang, Dawei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>5G microstrip patch antenna and microwave dielectric properties of 4 mol%LiF–MgO–xwt%MTiO3 (M = Ca, Sr) composite ceramics</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>32</volume><issue>19</issue><spage>23880</spage><epage>23888</epage><pages>23880-23888</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>The combination of low dielectric constant (
ε
r
) and a high-quality factor (
Q
×
f
) in MgO ceramics makes them attractive for 5G applications. However, the large negative temperature coefficient of resonance frequency (
τ
f
) impedes these applications. In this paper, the composite ceramics of MgO–
x
MTiO
3
(M = Ca, Sr;
x
= 0, 2.5, 5, 7.5, 10 wt%) with the addition of 4 mol% LiF as a sintering aid were fabricated by the traditional solid-state reaction method. The coexistence both MgO and MT phases can be observed in XRD and SEM in the 4 mol% LiF–MgO–wt%MTiO
3
systems under the high-temperature sintering process. With the addition of MT, the grain size of MgO decreased, the
ε
r
value improved with
τ
f
value gradually increasing from negative to positive value. Optimized microwave dielectric properties were achieved for 4 mol%LiF–MgO–10wt%SrTiO
3
ceramics sintered at 1300 °C for 6 h, yielding
ε
r
= 11.2,
Q
×
f
= 46, 815 GHz, and
τ
f
= + 3.51 ppm/°C. Based on it, a prototype of microstrip patch antenna was designed and fabricated with a center frequency at 5.64 GHz for 5G–Sub6GHz communication applications.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-021-06826-1</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4622-1234</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2021-10, Vol.32 (19), p.23880-23888 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_journals_2577917287 |
source | SpringerLink Journals - AutoHoldings |
subjects | Antenna design Ceramics Characterization and Evaluation of Materials Chemistry and Materials Science Dielectric properties Grain size High temperature Lithium fluoride Magnesium oxide Materials Science Microstrip antennas Optical and Electronic Materials Patch antennas Sintering Sintering aids Strontium Strontium titanates |
title | 5G microstrip patch antenna and microwave dielectric properties of 4 mol%LiF–MgO–xwt%MTiO3 (M = Ca, Sr) composite ceramics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T10%3A21%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=5G%20microstrip%20patch%20antenna%20and%20microwave%20dielectric%20properties%20of%204%C2%A0mol%25LiF%E2%80%93MgO%E2%80%93xwt%25MTiO3%20(M%E2%80%89=%E2%80%89Ca,%20Sr)%20composite%20ceramics&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Zhu,%20Shengkai&rft.date=2021-10-01&rft.volume=32&rft.issue=19&rft.spage=23880&rft.epage=23888&rft.pages=23880-23888&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-021-06826-1&rft_dat=%3Cproquest_cross%3E2577917287%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2577917287&rft_id=info:pmid/&rfr_iscdi=true |