A wax gourd flesh-derived porous carbon activated by different activating agents as lithium ion battery anode material
A wax gourd flesh-derived porous carbon material has been prepared using different activating agents through the pyrolysis carbonization method. The materials activated by CaCl 2 and KOH were marked as WGF-CaCl 2 and WGF-KOH, respectively. The WGF-CaCl 2 and WGF-KOH materials have lamellar structure...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in electronics 2021-10, Vol.32 (19), p.23776-23785 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 23785 |
---|---|
container_issue | 19 |
container_start_page | 23776 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 32 |
creator | Zhang, Yanlei Li, Xin Wang, Qiufen Miao, Juan Tian, Huifang Liu, Xiaochun Shen, Ni Li, Xiaoyan |
description | A wax gourd flesh-derived porous carbon material has been prepared using different activating agents through the pyrolysis carbonization method. The materials activated by CaCl
2
and KOH were marked as WGF-CaCl
2
and WGF-KOH, respectively. The WGF-CaCl
2
and WGF-KOH materials have lamellar structures that small particles randomly distribute on the pleats. Compared with the WGF-CaCl
2
, the WGF-KOH material takes on a higher specific surface area. The WGF-CaCl
2
and WGF-KOH materials have different lithium storage performances. The first discharge capacity (152.2/776.6 mAh g
−1
), the cycling capacity and the rate retention capacity of the WGF-KOH are higher than that of the WGF-CaCl
2
because the WGF-KOH material has more micropores, a high-specific surface area and a high Si content. |
doi_str_mv | 10.1007/s10854-021-06705-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2577916869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2577916869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-5a34e63aef9f5aa5962f91aeca7fe1fb9c6bb9b6cb944861881027435a8f3eda3</originalsourceid><addsrcrecordid>eNp9kM9LwzAYhoMoOKf_gKeA52jSNGlyHMNfIHhR8Ba-tkmX0bUzaaf7782s4s1T4OV93o88CF0yes0oLW4io0rkhGaMUFlQQfQRmjFRcJKr7O0YzagWBclFlp2isxjXlFKZczVDuwX-gE_c9GOosWttXJHaBr-zNd72oR8jriCUfYehGvwOhpSXe1x752yw3fAb-67B0KQgYoi49cPKjxvsE1fCMNiwx9D1tcWbtBA8tOfoxEEb7cXPO0evd7cvywfy9Hz_uFw8kYozPRABPLeSg3XaCQChZeY0A1tB4Sxzpa5kWepSVqXOcyWZUoxmRc4FKMdtDXyOrqbdbejfRxsHs04_7dJJk4mi0EwqqVMrm1pV6GMM1plt8BsIe8OoOfg1k1-T_Jpvv-YA8QmKqdw1NvxN_0N9AWckgHc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2577916869</pqid></control><display><type>article</type><title>A wax gourd flesh-derived porous carbon activated by different activating agents as lithium ion battery anode material</title><source>SpringerLink Journals</source><creator>Zhang, Yanlei ; Li, Xin ; Wang, Qiufen ; Miao, Juan ; Tian, Huifang ; Liu, Xiaochun ; Shen, Ni ; Li, Xiaoyan</creator><creatorcontrib>Zhang, Yanlei ; Li, Xin ; Wang, Qiufen ; Miao, Juan ; Tian, Huifang ; Liu, Xiaochun ; Shen, Ni ; Li, Xiaoyan</creatorcontrib><description>A wax gourd flesh-derived porous carbon material has been prepared using different activating agents through the pyrolysis carbonization method. The materials activated by CaCl
2
and KOH were marked as WGF-CaCl
2
and WGF-KOH, respectively. The WGF-CaCl
2
and WGF-KOH materials have lamellar structures that small particles randomly distribute on the pleats. Compared with the WGF-CaCl
2
, the WGF-KOH material takes on a higher specific surface area. The WGF-CaCl
2
and WGF-KOH materials have different lithium storage performances. The first discharge capacity (152.2/776.6 mAh g
−1
), the cycling capacity and the rate retention capacity of the WGF-KOH are higher than that of the WGF-CaCl
2
because the WGF-KOH material has more micropores, a high-specific surface area and a high Si content.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-021-06705-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Activated carbon ; Anodes ; Calcium chloride ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Electrode materials ; Lamellar structure ; Lithium ; Lithium-ion batteries ; Materials Science ; Optical and Electronic Materials ; Porous materials ; Pyrolysis ; Rechargeable batteries ; Specific surface ; Surface area ; Waxes</subject><ispartof>Journal of materials science. Materials in electronics, 2021-10, Vol.32 (19), p.23776-23785</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-5a34e63aef9f5aa5962f91aeca7fe1fb9c6bb9b6cb944861881027435a8f3eda3</citedby><cites>FETCH-LOGICAL-c319t-5a34e63aef9f5aa5962f91aeca7fe1fb9c6bb9b6cb944861881027435a8f3eda3</cites><orcidid>0000-0003-4294-6681</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-021-06705-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-021-06705-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Zhang, Yanlei</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Wang, Qiufen</creatorcontrib><creatorcontrib>Miao, Juan</creatorcontrib><creatorcontrib>Tian, Huifang</creatorcontrib><creatorcontrib>Liu, Xiaochun</creatorcontrib><creatorcontrib>Shen, Ni</creatorcontrib><creatorcontrib>Li, Xiaoyan</creatorcontrib><title>A wax gourd flesh-derived porous carbon activated by different activating agents as lithium ion battery anode material</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>A wax gourd flesh-derived porous carbon material has been prepared using different activating agents through the pyrolysis carbonization method. The materials activated by CaCl
2
and KOH were marked as WGF-CaCl
2
and WGF-KOH, respectively. The WGF-CaCl
2
and WGF-KOH materials have lamellar structures that small particles randomly distribute on the pleats. Compared with the WGF-CaCl
2
, the WGF-KOH material takes on a higher specific surface area. The WGF-CaCl
2
and WGF-KOH materials have different lithium storage performances. The first discharge capacity (152.2/776.6 mAh g
−1
), the cycling capacity and the rate retention capacity of the WGF-KOH are higher than that of the WGF-CaCl
2
because the WGF-KOH material has more micropores, a high-specific surface area and a high Si content.</description><subject>Activated carbon</subject><subject>Anodes</subject><subject>Calcium chloride</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Electrode materials</subject><subject>Lamellar structure</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Porous materials</subject><subject>Pyrolysis</subject><subject>Rechargeable batteries</subject><subject>Specific surface</subject><subject>Surface area</subject><subject>Waxes</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kM9LwzAYhoMoOKf_gKeA52jSNGlyHMNfIHhR8Ba-tkmX0bUzaaf7782s4s1T4OV93o88CF0yes0oLW4io0rkhGaMUFlQQfQRmjFRcJKr7O0YzagWBclFlp2isxjXlFKZczVDuwX-gE_c9GOosWttXJHaBr-zNd72oR8jriCUfYehGvwOhpSXe1x752yw3fAb-67B0KQgYoi49cPKjxvsE1fCMNiwx9D1tcWbtBA8tOfoxEEb7cXPO0evd7cvywfy9Hz_uFw8kYozPRABPLeSg3XaCQChZeY0A1tB4Sxzpa5kWepSVqXOcyWZUoxmRc4FKMdtDXyOrqbdbejfRxsHs04_7dJJk4mi0EwqqVMrm1pV6GMM1plt8BsIe8OoOfg1k1-T_Jpvv-YA8QmKqdw1NvxN_0N9AWckgHc</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Zhang, Yanlei</creator><creator>Li, Xin</creator><creator>Wang, Qiufen</creator><creator>Miao, Juan</creator><creator>Tian, Huifang</creator><creator>Liu, Xiaochun</creator><creator>Shen, Ni</creator><creator>Li, Xiaoyan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-4294-6681</orcidid></search><sort><creationdate>20211001</creationdate><title>A wax gourd flesh-derived porous carbon activated by different activating agents as lithium ion battery anode material</title><author>Zhang, Yanlei ; Li, Xin ; Wang, Qiufen ; Miao, Juan ; Tian, Huifang ; Liu, Xiaochun ; Shen, Ni ; Li, Xiaoyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-5a34e63aef9f5aa5962f91aeca7fe1fb9c6bb9b6cb944861881027435a8f3eda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Activated carbon</topic><topic>Anodes</topic><topic>Calcium chloride</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Electrode materials</topic><topic>Lamellar structure</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Porous materials</topic><topic>Pyrolysis</topic><topic>Rechargeable batteries</topic><topic>Specific surface</topic><topic>Surface area</topic><topic>Waxes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yanlei</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Wang, Qiufen</creatorcontrib><creatorcontrib>Miao, Juan</creatorcontrib><creatorcontrib>Tian, Huifang</creatorcontrib><creatorcontrib>Liu, Xiaochun</creatorcontrib><creatorcontrib>Shen, Ni</creatorcontrib><creatorcontrib>Li, Xiaoyan</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yanlei</au><au>Li, Xin</au><au>Wang, Qiufen</au><au>Miao, Juan</au><au>Tian, Huifang</au><au>Liu, Xiaochun</au><au>Shen, Ni</au><au>Li, Xiaoyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A wax gourd flesh-derived porous carbon activated by different activating agents as lithium ion battery anode material</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>32</volume><issue>19</issue><spage>23776</spage><epage>23785</epage><pages>23776-23785</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>A wax gourd flesh-derived porous carbon material has been prepared using different activating agents through the pyrolysis carbonization method. The materials activated by CaCl
2
and KOH were marked as WGF-CaCl
2
and WGF-KOH, respectively. The WGF-CaCl
2
and WGF-KOH materials have lamellar structures that small particles randomly distribute on the pleats. Compared with the WGF-CaCl
2
, the WGF-KOH material takes on a higher specific surface area. The WGF-CaCl
2
and WGF-KOH materials have different lithium storage performances. The first discharge capacity (152.2/776.6 mAh g
−1
), the cycling capacity and the rate retention capacity of the WGF-KOH are higher than that of the WGF-CaCl
2
because the WGF-KOH material has more micropores, a high-specific surface area and a high Si content.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-021-06705-9</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4294-6681</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2021-10, Vol.32 (19), p.23776-23785 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_journals_2577916869 |
source | SpringerLink Journals |
subjects | Activated carbon Anodes Calcium chloride Characterization and Evaluation of Materials Chemistry and Materials Science Electrode materials Lamellar structure Lithium Lithium-ion batteries Materials Science Optical and Electronic Materials Porous materials Pyrolysis Rechargeable batteries Specific surface Surface area Waxes |
title | A wax gourd flesh-derived porous carbon activated by different activating agents as lithium ion battery anode material |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T00%3A33%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20wax%20gourd%20flesh-derived%20porous%20carbon%20activated%20by%20different%20activating%20agents%20as%20lithium%20ion%20battery%20anode%20material&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Zhang,%20Yanlei&rft.date=2021-10-01&rft.volume=32&rft.issue=19&rft.spage=23776&rft.epage=23785&rft.pages=23776-23785&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-021-06705-9&rft_dat=%3Cproquest_cross%3E2577916869%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2577916869&rft_id=info:pmid/&rfr_iscdi=true |