Ecosystem Processes Show Uniform Sensitivity to Winter Soil Temperature Change Across a Gradient from Central to Cold Marginal Stands of a Major Temperate Forest Tree

The magnitude and frequency of soil frost events might increase in northern temperate regions in response to climate warming due to reduced insulation caused by declining snow cover. In temperate deciduous forests, increased soil frost severity can hamper tree growth and increase the mortality of fi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecosystems (New York) 2021-09, Vol.24 (6), p.1545-1560
Hauptverfasser: Weigel, Robert, Henry, Hugh A. L., Beil, Ilka, Gebauer, Gerhard, Jurasinski, Gerald, Klisz, Marcin, van der Maaten, Ernst, Muffler, Lena, Kreyling, Juergen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1560
container_issue 6
container_start_page 1545
container_title Ecosystems (New York)
container_volume 24
creator Weigel, Robert
Henry, Hugh A. L.
Beil, Ilka
Gebauer, Gerhard
Jurasinski, Gerald
Klisz, Marcin
van der Maaten, Ernst
Muffler, Lena
Kreyling, Juergen
description The magnitude and frequency of soil frost events might increase in northern temperate regions in response to climate warming due to reduced insulation caused by declining snow cover. In temperate deciduous forests, increased soil frost severity can hamper tree growth and increase the mortality of fine roots, soil fauna and microorganisms, thus altering carbon and nutrient cycling. From single-site studies, however, it is unclear how the sensitivities of these responses change along continental gradients from regions with low to high snowfall. We conducted a gradient design snow cover and soil temperature manipulation experiment across a range of lowland beech forest sites to assess the site-specific sensitivity of tree growth and biogeochemical cycling to soil cooling. Even mild and inconsistent soil frost affected tree increment, germination, litter decomposition and the retention of added ¹⁵N. However, the sensitivity of response (treatment effect size per degree of warming or cooling) was not related to prevailing winter climate and snow cover conditions. Our results support that it may be valid to scale these responses to simulated winter climate change up from local studies to regional scales. This upscaling, however, needs to account for the fact that cold regions with historically high snowfall may experience increasingly harsh soil frost conditions, whereas in warmer regions with historically low snowfall, soil frost may diminish. Thus, despite the uniform biotic sensitivity of response, there may be opposing directions of winter climate change effects on temperate forests along continental temperature gradients due to different trends of winter soil temperature.
doi_str_mv 10.1007/s10021-021-00600-4
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2577912917</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A713729952</galeid><jstor_id>48773280</jstor_id><sourcerecordid>A713729952</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-a1bc152afe6d7f9d9538691d10af7902a6428eb88eff312b3da7656b43581ea83</originalsourceid><addsrcrecordid>eNp9kVFr2zAQx03ZYF23LzAoCPbsTpJlS3oMpu0KLSskZY9GsU-pgi1lJ2UjX2ifs0o8urciTjqO-_3vdFcUXxi9YpTKbzHfnJUnow2lpTgrzpmo6pI2XL87-bzUStAPxccYt5SyWglxXvy97kM8xAQTecTQQ4wQyfI5_CFP3tmAE1mCjy653y4dSArkp_MJkCyDG8kKph2gSXsE0j4bvwGy6DHESAy5RTM48IlYDBNps4dmPAq0YRzIg8GN8zmwTMYPkQSbkQezDfgqCuQmIMREVgjwqXhvzRjh87_3oni6uV6138v7H7d37eK-7AUXqTRs3bOaGwvNIK0edF2pRrOBUWOlptw0gitYKwXWVoyvq8HIpm7WeVCKgVHVRfF11t1h-LXP1btt2GNuNHa8llIzrpnMWVdz1saM0DlvQ_5cn88Ak-uDB-tyfCFZJbnWNc8An4HTdBBst0M3GTx0jHbHBXbzAruTHRfYiQxVMxRzcp4t_u_lTepyprYxBXytI5SUFVe0egEVrqkZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2577912917</pqid></control><display><type>article</type><title>Ecosystem Processes Show Uniform Sensitivity to Winter Soil Temperature Change Across a Gradient from Central to Cold Marginal Stands of a Major Temperate Forest Tree</title><source>SpringerLink Journals</source><creator>Weigel, Robert ; Henry, Hugh A. L. ; Beil, Ilka ; Gebauer, Gerhard ; Jurasinski, Gerald ; Klisz, Marcin ; van der Maaten, Ernst ; Muffler, Lena ; Kreyling, Juergen</creator><creatorcontrib>Weigel, Robert ; Henry, Hugh A. L. ; Beil, Ilka ; Gebauer, Gerhard ; Jurasinski, Gerald ; Klisz, Marcin ; van der Maaten, Ernst ; Muffler, Lena ; Kreyling, Juergen</creatorcontrib><description>The magnitude and frequency of soil frost events might increase in northern temperate regions in response to climate warming due to reduced insulation caused by declining snow cover. In temperate deciduous forests, increased soil frost severity can hamper tree growth and increase the mortality of fine roots, soil fauna and microorganisms, thus altering carbon and nutrient cycling. From single-site studies, however, it is unclear how the sensitivities of these responses change along continental gradients from regions with low to high snowfall. We conducted a gradient design snow cover and soil temperature manipulation experiment across a range of lowland beech forest sites to assess the site-specific sensitivity of tree growth and biogeochemical cycling to soil cooling. Even mild and inconsistent soil frost affected tree increment, germination, litter decomposition and the retention of added ¹⁵N. However, the sensitivity of response (treatment effect size per degree of warming or cooling) was not related to prevailing winter climate and snow cover conditions. Our results support that it may be valid to scale these responses to simulated winter climate change up from local studies to regional scales. This upscaling, however, needs to account for the fact that cold regions with historically high snowfall may experience increasingly harsh soil frost conditions, whereas in warmer regions with historically low snowfall, soil frost may diminish. Thus, despite the uniform biotic sensitivity of response, there may be opposing directions of winter climate change effects on temperate forests along continental temperature gradients due to different trends of winter soil temperature.</description><identifier>ISSN: 1432-9840</identifier><identifier>EISSN: 1435-0629</identifier><identifier>DOI: 10.1007/s10021-021-00600-4</identifier><language>eng</language><publisher>New York: Springer Science + Business Media</publisher><subject>Beech ; Biogeochemical cycles ; Biomedical and Life Sciences ; Carbon cycle ; Climate change ; Climate effects ; Cold regions ; Cooling ; Cycles ; Deciduous forests ; Ecology ; Ecosystems ; Environmental Management ; Forests ; Frost ; Geoecology/Natural Processes ; Germination ; Global temperature changes ; Global warming ; Health aspects ; Hydrology/Water Resources ; Insulation ; Life Sciences ; Microorganisms ; Nutrient cycles ; Original Paper ; Plant Sciences ; Sensitivity analysis ; Snow ; Snow cover ; Snowfall ; Soil conditions ; Soil fauna ; Soil microbiology ; Soil microorganisms ; Soil temperature ; Soils ; Temperate forests ; Temperature gradients ; Winter ; Zoology</subject><ispartof>Ecosystems (New York), 2021-09, Vol.24 (6), p.1545-1560</ispartof><rights>2021 The Author(s)</rights><rights>The Author(s) 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-a1bc152afe6d7f9d9538691d10af7902a6428eb88eff312b3da7656b43581ea83</citedby><cites>FETCH-LOGICAL-c424t-a1bc152afe6d7f9d9538691d10af7902a6428eb88eff312b3da7656b43581ea83</cites><orcidid>0000-0001-9486-6988 ; 0000-0001-8397-6292 ; 0000-0003-1577-7501 ; 0000-0003-1136-1373 ; 0000-0002-6248-9388 ; 0000-0001-8227-7297 ; 0000-0001-8489-7289 ; 0000-0001-9685-6783 ; 0000-0002-5218-6682</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10021-021-00600-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10021-021-00600-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Weigel, Robert</creatorcontrib><creatorcontrib>Henry, Hugh A. L.</creatorcontrib><creatorcontrib>Beil, Ilka</creatorcontrib><creatorcontrib>Gebauer, Gerhard</creatorcontrib><creatorcontrib>Jurasinski, Gerald</creatorcontrib><creatorcontrib>Klisz, Marcin</creatorcontrib><creatorcontrib>van der Maaten, Ernst</creatorcontrib><creatorcontrib>Muffler, Lena</creatorcontrib><creatorcontrib>Kreyling, Juergen</creatorcontrib><title>Ecosystem Processes Show Uniform Sensitivity to Winter Soil Temperature Change Across a Gradient from Central to Cold Marginal Stands of a Major Temperate Forest Tree</title><title>Ecosystems (New York)</title><addtitle>Ecosystems</addtitle><description>The magnitude and frequency of soil frost events might increase in northern temperate regions in response to climate warming due to reduced insulation caused by declining snow cover. In temperate deciduous forests, increased soil frost severity can hamper tree growth and increase the mortality of fine roots, soil fauna and microorganisms, thus altering carbon and nutrient cycling. From single-site studies, however, it is unclear how the sensitivities of these responses change along continental gradients from regions with low to high snowfall. We conducted a gradient design snow cover and soil temperature manipulation experiment across a range of lowland beech forest sites to assess the site-specific sensitivity of tree growth and biogeochemical cycling to soil cooling. Even mild and inconsistent soil frost affected tree increment, germination, litter decomposition and the retention of added ¹⁵N. However, the sensitivity of response (treatment effect size per degree of warming or cooling) was not related to prevailing winter climate and snow cover conditions. Our results support that it may be valid to scale these responses to simulated winter climate change up from local studies to regional scales. This upscaling, however, needs to account for the fact that cold regions with historically high snowfall may experience increasingly harsh soil frost conditions, whereas in warmer regions with historically low snowfall, soil frost may diminish. Thus, despite the uniform biotic sensitivity of response, there may be opposing directions of winter climate change effects on temperate forests along continental temperature gradients due to different trends of winter soil temperature.</description><subject>Beech</subject><subject>Biogeochemical cycles</subject><subject>Biomedical and Life Sciences</subject><subject>Carbon cycle</subject><subject>Climate change</subject><subject>Climate effects</subject><subject>Cold regions</subject><subject>Cooling</subject><subject>Cycles</subject><subject>Deciduous forests</subject><subject>Ecology</subject><subject>Ecosystems</subject><subject>Environmental Management</subject><subject>Forests</subject><subject>Frost</subject><subject>Geoecology/Natural Processes</subject><subject>Germination</subject><subject>Global temperature changes</subject><subject>Global warming</subject><subject>Health aspects</subject><subject>Hydrology/Water Resources</subject><subject>Insulation</subject><subject>Life Sciences</subject><subject>Microorganisms</subject><subject>Nutrient cycles</subject><subject>Original Paper</subject><subject>Plant Sciences</subject><subject>Sensitivity analysis</subject><subject>Snow</subject><subject>Snow cover</subject><subject>Snowfall</subject><subject>Soil conditions</subject><subject>Soil fauna</subject><subject>Soil microbiology</subject><subject>Soil microorganisms</subject><subject>Soil temperature</subject><subject>Soils</subject><subject>Temperate forests</subject><subject>Temperature gradients</subject><subject>Winter</subject><subject>Zoology</subject><issn>1432-9840</issn><issn>1435-0629</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kVFr2zAQx03ZYF23LzAoCPbsTpJlS3oMpu0KLSskZY9GsU-pgi1lJ2UjX2ifs0o8urciTjqO-_3vdFcUXxi9YpTKbzHfnJUnow2lpTgrzpmo6pI2XL87-bzUStAPxccYt5SyWglxXvy97kM8xAQTecTQQ4wQyfI5_CFP3tmAE1mCjy653y4dSArkp_MJkCyDG8kKph2gSXsE0j4bvwGy6DHESAy5RTM48IlYDBNps4dmPAq0YRzIg8GN8zmwTMYPkQSbkQezDfgqCuQmIMREVgjwqXhvzRjh87_3oni6uV6138v7H7d37eK-7AUXqTRs3bOaGwvNIK0edF2pRrOBUWOlptw0gitYKwXWVoyvq8HIpm7WeVCKgVHVRfF11t1h-LXP1btt2GNuNHa8llIzrpnMWVdz1saM0DlvQ_5cn88Ak-uDB-tyfCFZJbnWNc8An4HTdBBst0M3GTx0jHbHBXbzAruTHRfYiQxVMxRzcp4t_u_lTepyprYxBXytI5SUFVe0egEVrqkZ</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Weigel, Robert</creator><creator>Henry, Hugh A. L.</creator><creator>Beil, Ilka</creator><creator>Gebauer, Gerhard</creator><creator>Jurasinski, Gerald</creator><creator>Klisz, Marcin</creator><creator>van der Maaten, Ernst</creator><creator>Muffler, Lena</creator><creator>Kreyling, Juergen</creator><general>Springer Science + Business Media</general><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7ST</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-9486-6988</orcidid><orcidid>https://orcid.org/0000-0001-8397-6292</orcidid><orcidid>https://orcid.org/0000-0003-1577-7501</orcidid><orcidid>https://orcid.org/0000-0003-1136-1373</orcidid><orcidid>https://orcid.org/0000-0002-6248-9388</orcidid><orcidid>https://orcid.org/0000-0001-8227-7297</orcidid><orcidid>https://orcid.org/0000-0001-8489-7289</orcidid><orcidid>https://orcid.org/0000-0001-9685-6783</orcidid><orcidid>https://orcid.org/0000-0002-5218-6682</orcidid></search><sort><creationdate>20210901</creationdate><title>Ecosystem Processes Show Uniform Sensitivity to Winter Soil Temperature Change Across a Gradient from Central to Cold Marginal Stands of a Major Temperate Forest Tree</title><author>Weigel, Robert ; Henry, Hugh A. L. ; Beil, Ilka ; Gebauer, Gerhard ; Jurasinski, Gerald ; Klisz, Marcin ; van der Maaten, Ernst ; Muffler, Lena ; Kreyling, Juergen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-a1bc152afe6d7f9d9538691d10af7902a6428eb88eff312b3da7656b43581ea83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Beech</topic><topic>Biogeochemical cycles</topic><topic>Biomedical and Life Sciences</topic><topic>Carbon cycle</topic><topic>Climate change</topic><topic>Climate effects</topic><topic>Cold regions</topic><topic>Cooling</topic><topic>Cycles</topic><topic>Deciduous forests</topic><topic>Ecology</topic><topic>Ecosystems</topic><topic>Environmental Management</topic><topic>Forests</topic><topic>Frost</topic><topic>Geoecology/Natural Processes</topic><topic>Germination</topic><topic>Global temperature changes</topic><topic>Global warming</topic><topic>Health aspects</topic><topic>Hydrology/Water Resources</topic><topic>Insulation</topic><topic>Life Sciences</topic><topic>Microorganisms</topic><topic>Nutrient cycles</topic><topic>Original Paper</topic><topic>Plant Sciences</topic><topic>Sensitivity analysis</topic><topic>Snow</topic><topic>Snow cover</topic><topic>Snowfall</topic><topic>Soil conditions</topic><topic>Soil fauna</topic><topic>Soil microbiology</topic><topic>Soil microorganisms</topic><topic>Soil temperature</topic><topic>Soils</topic><topic>Temperate forests</topic><topic>Temperature gradients</topic><topic>Winter</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weigel, Robert</creatorcontrib><creatorcontrib>Henry, Hugh A. L.</creatorcontrib><creatorcontrib>Beil, Ilka</creatorcontrib><creatorcontrib>Gebauer, Gerhard</creatorcontrib><creatorcontrib>Jurasinski, Gerald</creatorcontrib><creatorcontrib>Klisz, Marcin</creatorcontrib><creatorcontrib>van der Maaten, Ernst</creatorcontrib><creatorcontrib>Muffler, Lena</creatorcontrib><creatorcontrib>Kreyling, Juergen</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Ecosystems (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weigel, Robert</au><au>Henry, Hugh A. L.</au><au>Beil, Ilka</au><au>Gebauer, Gerhard</au><au>Jurasinski, Gerald</au><au>Klisz, Marcin</au><au>van der Maaten, Ernst</au><au>Muffler, Lena</au><au>Kreyling, Juergen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ecosystem Processes Show Uniform Sensitivity to Winter Soil Temperature Change Across a Gradient from Central to Cold Marginal Stands of a Major Temperate Forest Tree</atitle><jtitle>Ecosystems (New York)</jtitle><stitle>Ecosystems</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>24</volume><issue>6</issue><spage>1545</spage><epage>1560</epage><pages>1545-1560</pages><issn>1432-9840</issn><eissn>1435-0629</eissn><abstract>The magnitude and frequency of soil frost events might increase in northern temperate regions in response to climate warming due to reduced insulation caused by declining snow cover. In temperate deciduous forests, increased soil frost severity can hamper tree growth and increase the mortality of fine roots, soil fauna and microorganisms, thus altering carbon and nutrient cycling. From single-site studies, however, it is unclear how the sensitivities of these responses change along continental gradients from regions with low to high snowfall. We conducted a gradient design snow cover and soil temperature manipulation experiment across a range of lowland beech forest sites to assess the site-specific sensitivity of tree growth and biogeochemical cycling to soil cooling. Even mild and inconsistent soil frost affected tree increment, germination, litter decomposition and the retention of added ¹⁵N. However, the sensitivity of response (treatment effect size per degree of warming or cooling) was not related to prevailing winter climate and snow cover conditions. Our results support that it may be valid to scale these responses to simulated winter climate change up from local studies to regional scales. This upscaling, however, needs to account for the fact that cold regions with historically high snowfall may experience increasingly harsh soil frost conditions, whereas in warmer regions with historically low snowfall, soil frost may diminish. Thus, despite the uniform biotic sensitivity of response, there may be opposing directions of winter climate change effects on temperate forests along continental temperature gradients due to different trends of winter soil temperature.</abstract><cop>New York</cop><pub>Springer Science + Business Media</pub><doi>10.1007/s10021-021-00600-4</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-9486-6988</orcidid><orcidid>https://orcid.org/0000-0001-8397-6292</orcidid><orcidid>https://orcid.org/0000-0003-1577-7501</orcidid><orcidid>https://orcid.org/0000-0003-1136-1373</orcidid><orcidid>https://orcid.org/0000-0002-6248-9388</orcidid><orcidid>https://orcid.org/0000-0001-8227-7297</orcidid><orcidid>https://orcid.org/0000-0001-8489-7289</orcidid><orcidid>https://orcid.org/0000-0001-9685-6783</orcidid><orcidid>https://orcid.org/0000-0002-5218-6682</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1432-9840
ispartof Ecosystems (New York), 2021-09, Vol.24 (6), p.1545-1560
issn 1432-9840
1435-0629
language eng
recordid cdi_proquest_journals_2577912917
source SpringerLink Journals
subjects Beech
Biogeochemical cycles
Biomedical and Life Sciences
Carbon cycle
Climate change
Climate effects
Cold regions
Cooling
Cycles
Deciduous forests
Ecology
Ecosystems
Environmental Management
Forests
Frost
Geoecology/Natural Processes
Germination
Global temperature changes
Global warming
Health aspects
Hydrology/Water Resources
Insulation
Life Sciences
Microorganisms
Nutrient cycles
Original Paper
Plant Sciences
Sensitivity analysis
Snow
Snow cover
Snowfall
Soil conditions
Soil fauna
Soil microbiology
Soil microorganisms
Soil temperature
Soils
Temperate forests
Temperature gradients
Winter
Zoology
title Ecosystem Processes Show Uniform Sensitivity to Winter Soil Temperature Change Across a Gradient from Central to Cold Marginal Stands of a Major Temperate Forest Tree
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T07%3A56%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ecosystem%20Processes%20Show%20Uniform%20Sensitivity%20to%20Winter%20Soil%20Temperature%20Change%20Across%20a%20Gradient%20from%20Central%20to%20Cold%20Marginal%20Stands%20of%20a%20Major%20Temperate%20Forest%20Tree&rft.jtitle=Ecosystems%20(New%20York)&rft.au=Weigel,%20Robert&rft.date=2021-09-01&rft.volume=24&rft.issue=6&rft.spage=1545&rft.epage=1560&rft.pages=1545-1560&rft.issn=1432-9840&rft.eissn=1435-0629&rft_id=info:doi/10.1007/s10021-021-00600-4&rft_dat=%3Cgale_proqu%3EA713729952%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2577912917&rft_id=info:pmid/&rft_galeid=A713729952&rft_jstor_id=48773280&rfr_iscdi=true