Enhanced Long-term and Snow-based Streamflow Forecasting by Artificial Intelligent Methods Using Satellite Imagery and Seasonal Information

This paper investigates the simultaneous use of in-situ hydrologic measurements in combination with two different artificial intelligent (AI) methods, namely, Adaptive Neuro Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN), for developing enhanced long-term streamflow forecasting m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian meteorology and hydrology 2021-06, Vol.46 (6), p.396-402
Hauptverfasser: Esmaeelzadeh, R., Golian, S., Sharific, S., Bigdel, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper investigates the simultaneous use of in-situ hydrologic measurements in combination with two different artificial intelligent (AI) methods, namely, Adaptive Neuro Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN), for developing enhanced long-term streamflow forecasting models. To enhance the reliability of the proposed models’ outputs, a sub-basin method using the regionalization approach is proposed. Furthermore, to accelerate the training process and achieve more accurate handling of seasonal changes, a parameter representing seasonal variations is introduced. The models are applied to the mountainous Talezang basin, southwestern Iran, for which there is a 14-year series of monthly in-situ data records and snow cover area data obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS). The results indicate that the use of the sub-basin approach significantly improves both AI methods’ performances. Moreover, it is deduced that the use of seasonal information and satellite data has a great impact on the model performance and accuracy. Comparing the long-term flow forecasts of both models showed that the ANFIS model is superior to the ANN.
ISSN:1068-3739
1934-8096
DOI:10.3103/S1068373921060066