5-Aza-2’-deoxycytidine induces a greater inflammatory change, at the molecular levels, in normoxic than hypoxic tumor microenvironment

Hypoxia is associated with tumor aggressiveness and poor prognosis, including breast cancer. Low oxygen levels induces global genomic hypomethylation and hypermethylation of specific loci in tumor cells. DNA methylation is a reversible epigenetic modification, usually associated with gene silencing,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular biology reports 2021-02, Vol.48 (2), p.1161-1169
Hauptverfasser: Salviano Soares de Amorim, Ísis, Rodrigues, Juliana Alves, Nicolau, Pedro, König, Sandra, Panis, Carolina, de Souza da Fonseca, Adenilson, Mencalha, Andre Luiz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1169
container_issue 2
container_start_page 1161
container_title Molecular biology reports
container_volume 48
creator Salviano Soares de Amorim, Ísis
Rodrigues, Juliana Alves
Nicolau, Pedro
König, Sandra
Panis, Carolina
de Souza da Fonseca, Adenilson
Mencalha, Andre Luiz
description Hypoxia is associated with tumor aggressiveness and poor prognosis, including breast cancer. Low oxygen levels induces global genomic hypomethylation and hypermethylation of specific loci in tumor cells. DNA methylation is a reversible epigenetic modification, usually associated with gene silencing, contributing to carcinogenesis and tumor progression. Since the effects of DNA methyltransferase inhibitor are context-dependent and as there is little data comparing their molecular effects in normoxic and hypoxic microenvironments in breast cancer, this study aimed to understand the gene expression profiles and molecular effects in response to treatment with DNA methyltransferase inhibitor in normoxia and hypoxia, using the breast cancer model. For this, a cDNA microarray was used to analyze the changes in the transcriptome upon treatment with DNA methyltransferase inhibitor (5-Aza-2’-deoxycytidine: 5-Aza-2’-dC), in normoxia and hypoxia. Furthermore, immunocytochemistry was performed to investigate the effect of 5-Aza-2’-dC on NF-κB/p65 inflammation regulator subcellular localization and expression, in normoxia and hypoxia conditions. We observed that proinflammatory pathways were upregulated by treatment with 5-Aza-2’-dC, in both conditions. However, treatment with 5-Aza-2’-dC in normoxia showed a greater amount of overexpressed proinflammatory pathways than 5-Aza-2’-dC in hypoxia. In this sense, we observed that the NF-κB expression increased only upon 5-Aza-2’-dC in normoxia. Moreover, nuclear staining for NF-κB and NF-κB target genes upregulation, IL1A and IL1B , were also observed after 5-Aza-2’-dC in normoxia. Our results suggest that 5-Aza-2’-dC induces a greater inflammatory change, at the molecular levels, in normoxic than hypoxic tumor microenvironment. These data may support further studies and expand the understanding of the DNA methyltransferase inhibitor effects in different tumor contexts.
doi_str_mv 10.1007/s11033-020-05931-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2577747802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2577747802</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-3df904e930085e21c3fb1e14f19c3b1dd6f2b7d78b5929352892290db679a3623</originalsourceid><addsrcrecordid>eNp9kLtuFTEQhi0EIofAC1AgS7Qx-Hq8LqOImxSJBmrLa8_mbLS2D_ZulKWi5BV4PZ4Ehw3QUY1m_M0_1ofQc0ZfMUr168oYFYJQTglVRjAiH6AdU1oQaXT3EO2ooG3YKXaCntR6TSmVTKvH6EQIJbUScoe-K3L-1RH-89sPEiDfrn6dxzAmwGMKi4eKHb4q4GYobTJMLkY357Jif3DpCs6wm_F8ABzzBH6ZXMET3MBUzxqNUy4x346-ES7hw3rcmiXmguPoS4Z0M5acIqT5KXo0uKnCs_t6ij6_ffPp4j25_Pjuw8X5JfFCq5mIMBgqwQhKOwWceTH0DJgcmPGiZyHsB97roLteGW6E4p3h3NDQ77VxYs_FKXq55R5L_rJAne11XkpqJy1XWmupO3pH8Y1qn6y1wGCPZYyurJZReyffbvJtk29_y7eyLb24j176COHvyh_bDRAbUNtTs1f-3f5P7C8MrJGn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2577747802</pqid></control><display><type>article</type><title>5-Aza-2’-deoxycytidine induces a greater inflammatory change, at the molecular levels, in normoxic than hypoxic tumor microenvironment</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Salviano Soares de Amorim, Ísis ; Rodrigues, Juliana Alves ; Nicolau, Pedro ; König, Sandra ; Panis, Carolina ; de Souza da Fonseca, Adenilson ; Mencalha, Andre Luiz</creator><creatorcontrib>Salviano Soares de Amorim, Ísis ; Rodrigues, Juliana Alves ; Nicolau, Pedro ; König, Sandra ; Panis, Carolina ; de Souza da Fonseca, Adenilson ; Mencalha, Andre Luiz</creatorcontrib><description>Hypoxia is associated with tumor aggressiveness and poor prognosis, including breast cancer. Low oxygen levels induces global genomic hypomethylation and hypermethylation of specific loci in tumor cells. DNA methylation is a reversible epigenetic modification, usually associated with gene silencing, contributing to carcinogenesis and tumor progression. Since the effects of DNA methyltransferase inhibitor are context-dependent and as there is little data comparing their molecular effects in normoxic and hypoxic microenvironments in breast cancer, this study aimed to understand the gene expression profiles and molecular effects in response to treatment with DNA methyltransferase inhibitor in normoxia and hypoxia, using the breast cancer model. For this, a cDNA microarray was used to analyze the changes in the transcriptome upon treatment with DNA methyltransferase inhibitor (5-Aza-2’-deoxycytidine: 5-Aza-2’-dC), in normoxia and hypoxia. Furthermore, immunocytochemistry was performed to investigate the effect of 5-Aza-2’-dC on NF-κB/p65 inflammation regulator subcellular localization and expression, in normoxia and hypoxia conditions. We observed that proinflammatory pathways were upregulated by treatment with 5-Aza-2’-dC, in both conditions. However, treatment with 5-Aza-2’-dC in normoxia showed a greater amount of overexpressed proinflammatory pathways than 5-Aza-2’-dC in hypoxia. In this sense, we observed that the NF-κB expression increased only upon 5-Aza-2’-dC in normoxia. Moreover, nuclear staining for NF-κB and NF-κB target genes upregulation, IL1A and IL1B , were also observed after 5-Aza-2’-dC in normoxia. Our results suggest that 5-Aza-2’-dC induces a greater inflammatory change, at the molecular levels, in normoxic than hypoxic tumor microenvironment. These data may support further studies and expand the understanding of the DNA methyltransferase inhibitor effects in different tumor contexts.</description><identifier>ISSN: 0301-4851</identifier><identifier>EISSN: 1573-4978</identifier><identifier>DOI: 10.1007/s11033-020-05931-4</identifier><identifier>PMID: 33547534</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Acetylation - drug effects ; Animal Anatomy ; Animal Biochemistry ; Biomedical and Life Sciences ; Breast cancer ; Carcinogenesis ; Cell Line, Tumor ; Decitabine - pharmacology ; Deoxyribonucleic acid ; DNA ; DNA methylation ; DNA Methylation - drug effects ; DNA methyltransferase ; DNA microarrays ; DNA Modification Methylases - antagonists &amp; inhibitors ; DNA Modification Methylases - genetics ; Enzyme Inhibitors - pharmacology ; Epigenesis, Genetic - genetics ; Epigenetics ; Gene expression ; Gene silencing ; Histology ; Humans ; Hypoxia ; IL-1β ; Immunocytochemistry ; Inflammation ; Inflammation - chemically induced ; Inflammation - genetics ; Inflammation - pathology ; Interleukin 1 ; Life Sciences ; Localization ; Morphology ; NF-κB protein ; Original Article ; Promoter Regions, Genetic - drug effects ; Promoter Regions, Genetic - genetics ; Transcription Factor RelA - genetics ; Transcriptomes ; Tumor cells ; Tumor Hypoxia - drug effects ; Tumor microenvironment ; Tumor Microenvironment - drug effects ; Tumor Microenvironment - genetics</subject><ispartof>Molecular biology reports, 2021-02, Vol.48 (2), p.1161-1169</ispartof><rights>Springer Nature B.V. 2021</rights><rights>Springer Nature B.V. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-3df904e930085e21c3fb1e14f19c3b1dd6f2b7d78b5929352892290db679a3623</citedby><cites>FETCH-LOGICAL-c375t-3df904e930085e21c3fb1e14f19c3b1dd6f2b7d78b5929352892290db679a3623</cites><orcidid>0000-0002-4139-4080 ; 0000-0002-2762-1400 ; 0000-0002-0104-4369 ; 0000-0003-3322-2120 ; 0000-0002-4441-4008 ; 0000-0002-9400-076X ; 0000-0003-3229-8094</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11033-020-05931-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11033-020-05931-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33547534$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Salviano Soares de Amorim, Ísis</creatorcontrib><creatorcontrib>Rodrigues, Juliana Alves</creatorcontrib><creatorcontrib>Nicolau, Pedro</creatorcontrib><creatorcontrib>König, Sandra</creatorcontrib><creatorcontrib>Panis, Carolina</creatorcontrib><creatorcontrib>de Souza da Fonseca, Adenilson</creatorcontrib><creatorcontrib>Mencalha, Andre Luiz</creatorcontrib><title>5-Aza-2’-deoxycytidine induces a greater inflammatory change, at the molecular levels, in normoxic than hypoxic tumor microenvironment</title><title>Molecular biology reports</title><addtitle>Mol Biol Rep</addtitle><addtitle>Mol Biol Rep</addtitle><description>Hypoxia is associated with tumor aggressiveness and poor prognosis, including breast cancer. Low oxygen levels induces global genomic hypomethylation and hypermethylation of specific loci in tumor cells. DNA methylation is a reversible epigenetic modification, usually associated with gene silencing, contributing to carcinogenesis and tumor progression. Since the effects of DNA methyltransferase inhibitor are context-dependent and as there is little data comparing their molecular effects in normoxic and hypoxic microenvironments in breast cancer, this study aimed to understand the gene expression profiles and molecular effects in response to treatment with DNA methyltransferase inhibitor in normoxia and hypoxia, using the breast cancer model. For this, a cDNA microarray was used to analyze the changes in the transcriptome upon treatment with DNA methyltransferase inhibitor (5-Aza-2’-deoxycytidine: 5-Aza-2’-dC), in normoxia and hypoxia. Furthermore, immunocytochemistry was performed to investigate the effect of 5-Aza-2’-dC on NF-κB/p65 inflammation regulator subcellular localization and expression, in normoxia and hypoxia conditions. We observed that proinflammatory pathways were upregulated by treatment with 5-Aza-2’-dC, in both conditions. However, treatment with 5-Aza-2’-dC in normoxia showed a greater amount of overexpressed proinflammatory pathways than 5-Aza-2’-dC in hypoxia. In this sense, we observed that the NF-κB expression increased only upon 5-Aza-2’-dC in normoxia. Moreover, nuclear staining for NF-κB and NF-κB target genes upregulation, IL1A and IL1B , were also observed after 5-Aza-2’-dC in normoxia. Our results suggest that 5-Aza-2’-dC induces a greater inflammatory change, at the molecular levels, in normoxic than hypoxic tumor microenvironment. These data may support further studies and expand the understanding of the DNA methyltransferase inhibitor effects in different tumor contexts.</description><subject>Acetylation - drug effects</subject><subject>Animal Anatomy</subject><subject>Animal Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Breast cancer</subject><subject>Carcinogenesis</subject><subject>Cell Line, Tumor</subject><subject>Decitabine - pharmacology</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA methylation</subject><subject>DNA Methylation - drug effects</subject><subject>DNA methyltransferase</subject><subject>DNA microarrays</subject><subject>DNA Modification Methylases - antagonists &amp; inhibitors</subject><subject>DNA Modification Methylases - genetics</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Epigenesis, Genetic - genetics</subject><subject>Epigenetics</subject><subject>Gene expression</subject><subject>Gene silencing</subject><subject>Histology</subject><subject>Humans</subject><subject>Hypoxia</subject><subject>IL-1β</subject><subject>Immunocytochemistry</subject><subject>Inflammation</subject><subject>Inflammation - chemically induced</subject><subject>Inflammation - genetics</subject><subject>Inflammation - pathology</subject><subject>Interleukin 1</subject><subject>Life Sciences</subject><subject>Localization</subject><subject>Morphology</subject><subject>NF-κB protein</subject><subject>Original Article</subject><subject>Promoter Regions, Genetic - drug effects</subject><subject>Promoter Regions, Genetic - genetics</subject><subject>Transcription Factor RelA - genetics</subject><subject>Transcriptomes</subject><subject>Tumor cells</subject><subject>Tumor Hypoxia - drug effects</subject><subject>Tumor microenvironment</subject><subject>Tumor Microenvironment - drug effects</subject><subject>Tumor Microenvironment - genetics</subject><issn>0301-4851</issn><issn>1573-4978</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kLtuFTEQhi0EIofAC1AgS7Qx-Hq8LqOImxSJBmrLa8_mbLS2D_ZulKWi5BV4PZ4Ehw3QUY1m_M0_1ofQc0ZfMUr168oYFYJQTglVRjAiH6AdU1oQaXT3EO2ooG3YKXaCntR6TSmVTKvH6EQIJbUScoe-K3L-1RH-89sPEiDfrn6dxzAmwGMKi4eKHb4q4GYobTJMLkY357Jif3DpCs6wm_F8ABzzBH6ZXMET3MBUzxqNUy4x346-ES7hw3rcmiXmguPoS4Z0M5acIqT5KXo0uKnCs_t6ij6_ffPp4j25_Pjuw8X5JfFCq5mIMBgqwQhKOwWceTH0DJgcmPGiZyHsB97roLteGW6E4p3h3NDQ77VxYs_FKXq55R5L_rJAne11XkpqJy1XWmupO3pH8Y1qn6y1wGCPZYyurJZReyffbvJtk29_y7eyLb24j176COHvyh_bDRAbUNtTs1f-3f5P7C8MrJGn</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Salviano Soares de Amorim, Ísis</creator><creator>Rodrigues, Juliana Alves</creator><creator>Nicolau, Pedro</creator><creator>König, Sandra</creator><creator>Panis, Carolina</creator><creator>de Souza da Fonseca, Adenilson</creator><creator>Mencalha, Andre Luiz</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0002-4139-4080</orcidid><orcidid>https://orcid.org/0000-0002-2762-1400</orcidid><orcidid>https://orcid.org/0000-0002-0104-4369</orcidid><orcidid>https://orcid.org/0000-0003-3322-2120</orcidid><orcidid>https://orcid.org/0000-0002-4441-4008</orcidid><orcidid>https://orcid.org/0000-0002-9400-076X</orcidid><orcidid>https://orcid.org/0000-0003-3229-8094</orcidid></search><sort><creationdate>20210201</creationdate><title>5-Aza-2’-deoxycytidine induces a greater inflammatory change, at the molecular levels, in normoxic than hypoxic tumor microenvironment</title><author>Salviano Soares de Amorim, Ísis ; Rodrigues, Juliana Alves ; Nicolau, Pedro ; König, Sandra ; Panis, Carolina ; de Souza da Fonseca, Adenilson ; Mencalha, Andre Luiz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-3df904e930085e21c3fb1e14f19c3b1dd6f2b7d78b5929352892290db679a3623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acetylation - drug effects</topic><topic>Animal Anatomy</topic><topic>Animal Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Breast cancer</topic><topic>Carcinogenesis</topic><topic>Cell Line, Tumor</topic><topic>Decitabine - pharmacology</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA methylation</topic><topic>DNA Methylation - drug effects</topic><topic>DNA methyltransferase</topic><topic>DNA microarrays</topic><topic>DNA Modification Methylases - antagonists &amp; inhibitors</topic><topic>DNA Modification Methylases - genetics</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Epigenesis, Genetic - genetics</topic><topic>Epigenetics</topic><topic>Gene expression</topic><topic>Gene silencing</topic><topic>Histology</topic><topic>Humans</topic><topic>Hypoxia</topic><topic>IL-1β</topic><topic>Immunocytochemistry</topic><topic>Inflammation</topic><topic>Inflammation - chemically induced</topic><topic>Inflammation - genetics</topic><topic>Inflammation - pathology</topic><topic>Interleukin 1</topic><topic>Life Sciences</topic><topic>Localization</topic><topic>Morphology</topic><topic>NF-κB protein</topic><topic>Original Article</topic><topic>Promoter Regions, Genetic - drug effects</topic><topic>Promoter Regions, Genetic - genetics</topic><topic>Transcription Factor RelA - genetics</topic><topic>Transcriptomes</topic><topic>Tumor cells</topic><topic>Tumor Hypoxia - drug effects</topic><topic>Tumor microenvironment</topic><topic>Tumor Microenvironment - drug effects</topic><topic>Tumor Microenvironment - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salviano Soares de Amorim, Ísis</creatorcontrib><creatorcontrib>Rodrigues, Juliana Alves</creatorcontrib><creatorcontrib>Nicolau, Pedro</creatorcontrib><creatorcontrib>König, Sandra</creatorcontrib><creatorcontrib>Panis, Carolina</creatorcontrib><creatorcontrib>de Souza da Fonseca, Adenilson</creatorcontrib><creatorcontrib>Mencalha, Andre Luiz</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><jtitle>Molecular biology reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salviano Soares de Amorim, Ísis</au><au>Rodrigues, Juliana Alves</au><au>Nicolau, Pedro</au><au>König, Sandra</au><au>Panis, Carolina</au><au>de Souza da Fonseca, Adenilson</au><au>Mencalha, Andre Luiz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>5-Aza-2’-deoxycytidine induces a greater inflammatory change, at the molecular levels, in normoxic than hypoxic tumor microenvironment</atitle><jtitle>Molecular biology reports</jtitle><stitle>Mol Biol Rep</stitle><addtitle>Mol Biol Rep</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>48</volume><issue>2</issue><spage>1161</spage><epage>1169</epage><pages>1161-1169</pages><issn>0301-4851</issn><eissn>1573-4978</eissn><abstract>Hypoxia is associated with tumor aggressiveness and poor prognosis, including breast cancer. Low oxygen levels induces global genomic hypomethylation and hypermethylation of specific loci in tumor cells. DNA methylation is a reversible epigenetic modification, usually associated with gene silencing, contributing to carcinogenesis and tumor progression. Since the effects of DNA methyltransferase inhibitor are context-dependent and as there is little data comparing their molecular effects in normoxic and hypoxic microenvironments in breast cancer, this study aimed to understand the gene expression profiles and molecular effects in response to treatment with DNA methyltransferase inhibitor in normoxia and hypoxia, using the breast cancer model. For this, a cDNA microarray was used to analyze the changes in the transcriptome upon treatment with DNA methyltransferase inhibitor (5-Aza-2’-deoxycytidine: 5-Aza-2’-dC), in normoxia and hypoxia. Furthermore, immunocytochemistry was performed to investigate the effect of 5-Aza-2’-dC on NF-κB/p65 inflammation regulator subcellular localization and expression, in normoxia and hypoxia conditions. We observed that proinflammatory pathways were upregulated by treatment with 5-Aza-2’-dC, in both conditions. However, treatment with 5-Aza-2’-dC in normoxia showed a greater amount of overexpressed proinflammatory pathways than 5-Aza-2’-dC in hypoxia. In this sense, we observed that the NF-κB expression increased only upon 5-Aza-2’-dC in normoxia. Moreover, nuclear staining for NF-κB and NF-κB target genes upregulation, IL1A and IL1B , were also observed after 5-Aza-2’-dC in normoxia. Our results suggest that 5-Aza-2’-dC induces a greater inflammatory change, at the molecular levels, in normoxic than hypoxic tumor microenvironment. These data may support further studies and expand the understanding of the DNA methyltransferase inhibitor effects in different tumor contexts.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>33547534</pmid><doi>10.1007/s11033-020-05931-4</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4139-4080</orcidid><orcidid>https://orcid.org/0000-0002-2762-1400</orcidid><orcidid>https://orcid.org/0000-0002-0104-4369</orcidid><orcidid>https://orcid.org/0000-0003-3322-2120</orcidid><orcidid>https://orcid.org/0000-0002-4441-4008</orcidid><orcidid>https://orcid.org/0000-0002-9400-076X</orcidid><orcidid>https://orcid.org/0000-0003-3229-8094</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0301-4851
ispartof Molecular biology reports, 2021-02, Vol.48 (2), p.1161-1169
issn 0301-4851
1573-4978
language eng
recordid cdi_proquest_journals_2577747802
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Acetylation - drug effects
Animal Anatomy
Animal Biochemistry
Biomedical and Life Sciences
Breast cancer
Carcinogenesis
Cell Line, Tumor
Decitabine - pharmacology
Deoxyribonucleic acid
DNA
DNA methylation
DNA Methylation - drug effects
DNA methyltransferase
DNA microarrays
DNA Modification Methylases - antagonists & inhibitors
DNA Modification Methylases - genetics
Enzyme Inhibitors - pharmacology
Epigenesis, Genetic - genetics
Epigenetics
Gene expression
Gene silencing
Histology
Humans
Hypoxia
IL-1β
Immunocytochemistry
Inflammation
Inflammation - chemically induced
Inflammation - genetics
Inflammation - pathology
Interleukin 1
Life Sciences
Localization
Morphology
NF-κB protein
Original Article
Promoter Regions, Genetic - drug effects
Promoter Regions, Genetic - genetics
Transcription Factor RelA - genetics
Transcriptomes
Tumor cells
Tumor Hypoxia - drug effects
Tumor microenvironment
Tumor Microenvironment - drug effects
Tumor Microenvironment - genetics
title 5-Aza-2’-deoxycytidine induces a greater inflammatory change, at the molecular levels, in normoxic than hypoxic tumor microenvironment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T18%3A15%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=5-Aza-2%E2%80%99-deoxycytidine%20induces%20a%20greater%20inflammatory%20change,%20at%20the%20molecular%20levels,%20in%20normoxic%20than%20hypoxic%20tumor%20microenvironment&rft.jtitle=Molecular%20biology%20reports&rft.au=Salviano%20Soares%20de%20Amorim,%20%C3%8Dsis&rft.date=2021-02-01&rft.volume=48&rft.issue=2&rft.spage=1161&rft.epage=1169&rft.pages=1161-1169&rft.issn=0301-4851&rft.eissn=1573-4978&rft_id=info:doi/10.1007/s11033-020-05931-4&rft_dat=%3Cproquest_cross%3E2577747802%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2577747802&rft_id=info:pmid/33547534&rfr_iscdi=true