Ramsey-type numbers involving graphs and hypergraphs with large girth

Erdős asked if, for every pair of positive integers g and k , there exists a graph H having girth ( H ) = k and the property that every r -colouring of the edges of H yields a monochromatic cycle C k . The existence of such graphs H was confirmed by the third author and Ruciński. We consider the rel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combinatorics, probability & computing probability & computing, 2021-09, Vol.30 (5), p.722-740
Hauptverfasser: Hàn, Hiêp, Retter, Troy, Rödl, Vojtêch, Schacht, Mathias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 740
container_issue 5
container_start_page 722
container_title Combinatorics, probability & computing
container_volume 30
creator Hàn, Hiêp
Retter, Troy
Rödl, Vojtêch
Schacht, Mathias
description Erdős asked if, for every pair of positive integers g and k , there exists a graph H having girth ( H ) = k and the property that every r -colouring of the edges of H yields a monochromatic cycle C k . The existence of such graphs H was confirmed by the third author and Ruciński. We consider the related numerical problem of estimating the order of the smallest graph H with this property for given integers r and k . We show that there exists a graph H on R 10 k 2 ; k 15 k 3 vertices (where R = R ( C k ; r ) is the r -colour Ramsey number for the cycle C k ) having girth ( H ) = k and the Ramsey property that every r -colouring of the edges of H yields a monochromatic C k Two related numerical problems regarding arithmetic progressions in subsets of the integers and cliques in graphs are also considered.
doi_str_mv 10.1017/S0963548320000383
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2577678803</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2577678803</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-457c050a7ebc38e093068a9c2be07c1b477445797784b91dd53b1ecc35ab89813</originalsourceid><addsrcrecordid>eNplkEtLxDAUhYMoWEd_gLuA62oezWspw-gIA4KPdUnSTNuhL5N2pP_elJmdd3O4nI9z4ABwj9EjRlg8fSLFKcskJSgelfQCJDjjKiWY00uQLHa6-NfgJoRDZBjjKAGbD90GN6fjPDjYTa1xPsC6O_bNse5KWHo9VAHqroBVJPz5_63HCjbalw6WtR-rW3C1101wd2ddge-Xzdd6m-7eX9_Wz7vUEsLGNGPCIoa0cMZS6ZCiiEutLDEOCYtNJkQWGSWEzIzCRcGowc5ayrSRSmK6Ag-n3MH3P5MLY37oJ9_FypwwIbiQEtFI4RNlfR-Cd_t88HWr_ZxjlC9r5f_Won-G6Fv3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2577678803</pqid></control><display><type>article</type><title>Ramsey-type numbers involving graphs and hypergraphs with large girth</title><source>Cambridge University Press Journals Complete</source><creator>Hàn, Hiêp ; Retter, Troy ; Rödl, Vojtêch ; Schacht, Mathias</creator><creatorcontrib>Hàn, Hiêp ; Retter, Troy ; Rödl, Vojtêch ; Schacht, Mathias</creatorcontrib><description>Erdős asked if, for every pair of positive integers g and k , there exists a graph H having girth ( H ) = k and the property that every r -colouring of the edges of H yields a monochromatic cycle C k . The existence of such graphs H was confirmed by the third author and Ruciński. We consider the related numerical problem of estimating the order of the smallest graph H with this property for given integers r and k . We show that there exists a graph H on R 10 k 2 ; k 15 k 3 vertices (where R = R ( C k ; r ) is the r -colour Ramsey number for the cycle C k ) having girth ( H ) = k and the Ramsey property that every r -colouring of the edges of H yields a monochromatic C k Two related numerical problems regarding arithmetic progressions in subsets of the integers and cliques in graphs are also considered.</description><identifier>ISSN: 0963-5483</identifier><identifier>EISSN: 1469-2163</identifier><identifier>DOI: 10.1017/S0963548320000383</identifier><language>eng</language><publisher>Cambridge: Cambridge University Press</publisher><subject>Apexes ; Coloring ; Graph theory ; Graphs ; Integers ; Numbers ; Progressions</subject><ispartof>Combinatorics, probability &amp; computing, 2021-09, Vol.30 (5), p.722-740</ispartof><rights>The Author(s), 2021. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c225t-457c050a7ebc38e093068a9c2be07c1b477445797784b91dd53b1ecc35ab89813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Hàn, Hiêp</creatorcontrib><creatorcontrib>Retter, Troy</creatorcontrib><creatorcontrib>Rödl, Vojtêch</creatorcontrib><creatorcontrib>Schacht, Mathias</creatorcontrib><title>Ramsey-type numbers involving graphs and hypergraphs with large girth</title><title>Combinatorics, probability &amp; computing</title><description>Erdős asked if, for every pair of positive integers g and k , there exists a graph H having girth ( H ) = k and the property that every r -colouring of the edges of H yields a monochromatic cycle C k . The existence of such graphs H was confirmed by the third author and Ruciński. We consider the related numerical problem of estimating the order of the smallest graph H with this property for given integers r and k . We show that there exists a graph H on R 10 k 2 ; k 15 k 3 vertices (where R = R ( C k ; r ) is the r -colour Ramsey number for the cycle C k ) having girth ( H ) = k and the Ramsey property that every r -colouring of the edges of H yields a monochromatic C k Two related numerical problems regarding arithmetic progressions in subsets of the integers and cliques in graphs are also considered.</description><subject>Apexes</subject><subject>Coloring</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Integers</subject><subject>Numbers</subject><subject>Progressions</subject><issn>0963-5483</issn><issn>1469-2163</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNplkEtLxDAUhYMoWEd_gLuA62oezWspw-gIA4KPdUnSTNuhL5N2pP_elJmdd3O4nI9z4ABwj9EjRlg8fSLFKcskJSgelfQCJDjjKiWY00uQLHa6-NfgJoRDZBjjKAGbD90GN6fjPDjYTa1xPsC6O_bNse5KWHo9VAHqroBVJPz5_63HCjbalw6WtR-rW3C1101wd2ddge-Xzdd6m-7eX9_Wz7vUEsLGNGPCIoa0cMZS6ZCiiEutLDEOCYtNJkQWGSWEzIzCRcGowc5ayrSRSmK6Ag-n3MH3P5MLY37oJ9_FypwwIbiQEtFI4RNlfR-Cd_t88HWr_ZxjlC9r5f_Won-G6Fv3</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Hàn, Hiêp</creator><creator>Retter, Troy</creator><creator>Rödl, Vojtêch</creator><creator>Schacht, Mathias</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>202109</creationdate><title>Ramsey-type numbers involving graphs and hypergraphs with large girth</title><author>Hàn, Hiêp ; Retter, Troy ; Rödl, Vojtêch ; Schacht, Mathias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-457c050a7ebc38e093068a9c2be07c1b477445797784b91dd53b1ecc35ab89813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Apexes</topic><topic>Coloring</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Integers</topic><topic>Numbers</topic><topic>Progressions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hàn, Hiêp</creatorcontrib><creatorcontrib>Retter, Troy</creatorcontrib><creatorcontrib>Rödl, Vojtêch</creatorcontrib><creatorcontrib>Schacht, Mathias</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Combinatorics, probability &amp; computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hàn, Hiêp</au><au>Retter, Troy</au><au>Rödl, Vojtêch</au><au>Schacht, Mathias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ramsey-type numbers involving graphs and hypergraphs with large girth</atitle><jtitle>Combinatorics, probability &amp; computing</jtitle><date>2021-09</date><risdate>2021</risdate><volume>30</volume><issue>5</issue><spage>722</spage><epage>740</epage><pages>722-740</pages><issn>0963-5483</issn><eissn>1469-2163</eissn><abstract>Erdős asked if, for every pair of positive integers g and k , there exists a graph H having girth ( H ) = k and the property that every r -colouring of the edges of H yields a monochromatic cycle C k . The existence of such graphs H was confirmed by the third author and Ruciński. We consider the related numerical problem of estimating the order of the smallest graph H with this property for given integers r and k . We show that there exists a graph H on R 10 k 2 ; k 15 k 3 vertices (where R = R ( C k ; r ) is the r -colour Ramsey number for the cycle C k ) having girth ( H ) = k and the Ramsey property that every r -colouring of the edges of H yields a monochromatic C k Two related numerical problems regarding arithmetic progressions in subsets of the integers and cliques in graphs are also considered.</abstract><cop>Cambridge</cop><pub>Cambridge University Press</pub><doi>10.1017/S0963548320000383</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0963-5483
ispartof Combinatorics, probability & computing, 2021-09, Vol.30 (5), p.722-740
issn 0963-5483
1469-2163
language eng
recordid cdi_proquest_journals_2577678803
source Cambridge University Press Journals Complete
subjects Apexes
Coloring
Graph theory
Graphs
Integers
Numbers
Progressions
title Ramsey-type numbers involving graphs and hypergraphs with large girth
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T03%3A16%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ramsey-type%20numbers%20involving%20graphs%20and%20hypergraphs%20with%20large%20girth&rft.jtitle=Combinatorics,%20probability%20&%20computing&rft.au=H%C3%A0n,%20Hi%C3%AAp&rft.date=2021-09&rft.volume=30&rft.issue=5&rft.spage=722&rft.epage=740&rft.pages=722-740&rft.issn=0963-5483&rft.eissn=1469-2163&rft_id=info:doi/10.1017/S0963548320000383&rft_dat=%3Cproquest_cross%3E2577678803%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2577678803&rft_id=info:pmid/&rfr_iscdi=true