Adopting Automated Bug Assignment in Practice -- A Registered Report of an Industrial Case Study
[Background/Context] The continuous inflow of bug reports is a considerable challenge in large development projects. Inspired by contemporary work on mining software repositories, we designed a prototype bug assignment solution based on machine learning in 2011-2016. The prototype evolved into an in...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-09 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Borg, Markus Jonsson, Leif Engström, Emelie Bartalos, Béla Szabo, Attila |
description | [Background/Context] The continuous inflow of bug reports is a considerable challenge in large development projects. Inspired by contemporary work on mining software repositories, we designed a prototype bug assignment solution based on machine learning in 2011-2016. The prototype evolved into an internal Ericsson product, TRR, in 2017-2018. TRR's first bug assignment without human intervention happened in 2019. [Objective/Aim] Our exploratory study will evaluate the adoption of TRR within its industrial context at Ericsson. We seek to understand 1) how TRR performs in the field, 2) what value TRR provides to Ericsson, and 3) how TRR has influenced the ways of working. Secondly, we will provide lessons learned related to productization of a research prototype within a company. [Method] We design an industrial case study combining interviews with TRR developers and users with analysis of data extracted from the bug tracking system at Ericsson. Furthermore, we will analyze sprint planning meetings recorded during the productization. Our data analysis will include thematic analysis, descriptive statistics, and Bayesian causal analysis. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2577600118</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2577600118</sourcerecordid><originalsourceid>FETCH-proquest_journals_25776001183</originalsourceid><addsrcrecordid>eNqNisEKgkAUAJcgKMp_eNBZWNdMrxZF3aK626IvWdFd2_f20N_noQ_oNAwzM7FUaZrExVaphYiIOiml2uUqy9KleJaNG9nYFsrAbtCMDezDZESmtQNaBmPh6nXNpkaIYyjhhq0hRj-tNxydZ3Av0BYutgnE3ugeDpoQ7hyaz1rMX7onjH5cic3p-Dic49G7d0DiqnPB2ylVKsvznZRJUqT_XV8zbkN_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2577600118</pqid></control><display><type>article</type><title>Adopting Automated Bug Assignment in Practice -- A Registered Report of an Industrial Case Study</title><source>Free E- Journals</source><creator>Borg, Markus ; Jonsson, Leif ; Engström, Emelie ; Bartalos, Béla ; Szabo, Attila</creator><creatorcontrib>Borg, Markus ; Jonsson, Leif ; Engström, Emelie ; Bartalos, Béla ; Szabo, Attila</creatorcontrib><description>[Background/Context] The continuous inflow of bug reports is a considerable challenge in large development projects. Inspired by contemporary work on mining software repositories, we designed a prototype bug assignment solution based on machine learning in 2011-2016. The prototype evolved into an internal Ericsson product, TRR, in 2017-2018. TRR's first bug assignment without human intervention happened in 2019. [Objective/Aim] Our exploratory study will evaluate the adoption of TRR within its industrial context at Ericsson. We seek to understand 1) how TRR performs in the field, 2) what value TRR provides to Ericsson, and 3) how TRR has influenced the ways of working. Secondly, we will provide lessons learned related to productization of a research prototype within a company. [Method] We design an industrial case study combining interviews with TRR developers and users with analysis of data extracted from the bug tracking system at Ericsson. Furthermore, we will analyze sprint planning meetings recorded during the productization. Our data analysis will include thematic analysis, descriptive statistics, and Bayesian causal analysis.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Case studies ; Context ; Data analysis ; Machine learning ; Prototypes ; Tracking systems</subject><ispartof>arXiv.org, 2021-09</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Borg, Markus</creatorcontrib><creatorcontrib>Jonsson, Leif</creatorcontrib><creatorcontrib>Engström, Emelie</creatorcontrib><creatorcontrib>Bartalos, Béla</creatorcontrib><creatorcontrib>Szabo, Attila</creatorcontrib><title>Adopting Automated Bug Assignment in Practice -- A Registered Report of an Industrial Case Study</title><title>arXiv.org</title><description>[Background/Context] The continuous inflow of bug reports is a considerable challenge in large development projects. Inspired by contemporary work on mining software repositories, we designed a prototype bug assignment solution based on machine learning in 2011-2016. The prototype evolved into an internal Ericsson product, TRR, in 2017-2018. TRR's first bug assignment without human intervention happened in 2019. [Objective/Aim] Our exploratory study will evaluate the adoption of TRR within its industrial context at Ericsson. We seek to understand 1) how TRR performs in the field, 2) what value TRR provides to Ericsson, and 3) how TRR has influenced the ways of working. Secondly, we will provide lessons learned related to productization of a research prototype within a company. [Method] We design an industrial case study combining interviews with TRR developers and users with analysis of data extracted from the bug tracking system at Ericsson. Furthermore, we will analyze sprint planning meetings recorded during the productization. Our data analysis will include thematic analysis, descriptive statistics, and Bayesian causal analysis.</description><subject>Case studies</subject><subject>Context</subject><subject>Data analysis</subject><subject>Machine learning</subject><subject>Prototypes</subject><subject>Tracking systems</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNisEKgkAUAJcgKMp_eNBZWNdMrxZF3aK626IvWdFd2_f20N_noQ_oNAwzM7FUaZrExVaphYiIOiml2uUqy9KleJaNG9nYFsrAbtCMDezDZESmtQNaBmPh6nXNpkaIYyjhhq0hRj-tNxydZ3Av0BYutgnE3ugeDpoQ7hyaz1rMX7onjH5cic3p-Dic49G7d0DiqnPB2ylVKsvznZRJUqT_XV8zbkN_</recordid><startdate>20210928</startdate><enddate>20210928</enddate><creator>Borg, Markus</creator><creator>Jonsson, Leif</creator><creator>Engström, Emelie</creator><creator>Bartalos, Béla</creator><creator>Szabo, Attila</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210928</creationdate><title>Adopting Automated Bug Assignment in Practice -- A Registered Report of an Industrial Case Study</title><author>Borg, Markus ; Jonsson, Leif ; Engström, Emelie ; Bartalos, Béla ; Szabo, Attila</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25776001183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Case studies</topic><topic>Context</topic><topic>Data analysis</topic><topic>Machine learning</topic><topic>Prototypes</topic><topic>Tracking systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Borg, Markus</creatorcontrib><creatorcontrib>Jonsson, Leif</creatorcontrib><creatorcontrib>Engström, Emelie</creatorcontrib><creatorcontrib>Bartalos, Béla</creatorcontrib><creatorcontrib>Szabo, Attila</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borg, Markus</au><au>Jonsson, Leif</au><au>Engström, Emelie</au><au>Bartalos, Béla</au><au>Szabo, Attila</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Adopting Automated Bug Assignment in Practice -- A Registered Report of an Industrial Case Study</atitle><jtitle>arXiv.org</jtitle><date>2021-09-28</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>[Background/Context] The continuous inflow of bug reports is a considerable challenge in large development projects. Inspired by contemporary work on mining software repositories, we designed a prototype bug assignment solution based on machine learning in 2011-2016. The prototype evolved into an internal Ericsson product, TRR, in 2017-2018. TRR's first bug assignment without human intervention happened in 2019. [Objective/Aim] Our exploratory study will evaluate the adoption of TRR within its industrial context at Ericsson. We seek to understand 1) how TRR performs in the field, 2) what value TRR provides to Ericsson, and 3) how TRR has influenced the ways of working. Secondly, we will provide lessons learned related to productization of a research prototype within a company. [Method] We design an industrial case study combining interviews with TRR developers and users with analysis of data extracted from the bug tracking system at Ericsson. Furthermore, we will analyze sprint planning meetings recorded during the productization. Our data analysis will include thematic analysis, descriptive statistics, and Bayesian causal analysis.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2577600118 |
source | Free E- Journals |
subjects | Case studies Context Data analysis Machine learning Prototypes Tracking systems |
title | Adopting Automated Bug Assignment in Practice -- A Registered Report of an Industrial Case Study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T06%3A04%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Adopting%20Automated%20Bug%20Assignment%20in%20Practice%20--%20A%20Registered%20Report%20of%20an%20Industrial%20Case%20Study&rft.jtitle=arXiv.org&rft.au=Borg,%20Markus&rft.date=2021-09-28&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2577600118%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2577600118&rft_id=info:pmid/&rfr_iscdi=true |