Evolution of Comets

Comets that were ejected by giant planets to the Oort cloud during the formation and evolution of planetary systems may get back to the orbits in the vicinity of the Sun with a time lapse under the gravitational influence of the same planets. The evaporation of cometary nuclei due to the solar radia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy reports 2021-09, Vol.65 (9), p.884-896
Hauptverfasser: Tutukov, A. V., Sizova, M. D., Vereshchagin, S. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 896
container_issue 9
container_start_page 884
container_title Astronomy reports
container_volume 65
creator Tutukov, A. V.
Sizova, M. D.
Vereshchagin, S. V.
description Comets that were ejected by giant planets to the Oort cloud during the formation and evolution of planetary systems may get back to the orbits in the vicinity of the Sun with a time lapse under the gravitational influence of the same planets. The evaporation of cometary nuclei due to the solar radiation impact results in releasing a solid dust component from comets. We consider a numerical model of comet transformation to dust streams that move along cometary orbits around the Sun. The lifetime of dust streams, which are formed on the orbits of their parent comets, has been estimated. In the other planetary systems, which contain giant planets satisfying the condition (where m and M are the masses of a planet and a star, respectively, r is the radius of a planet, and a is the semimajor axis of its orbit around the star), comets evolve in the same way. From the analysis of the interaction of the Oort cloud objects and the Sun with the passing-by stars and stellar clusters, it follows that a dense part of the Oort cloud is apparently limited in size; and we estimate this size.
doi_str_mv 10.1134/S1063772921090079
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2577494542</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2577494542</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-9f48f051f68d0db3c25a2fa8ab180d0aaee4715267eecbc3be851f6b21b80a703</originalsourceid><addsrcrecordid>eNp1j81LAzEUxIMoWKsnT94Knlffy_cepdQPKHhQzyHZTaSl3dRkV_C_N8sKHsTTG5jfzGMIuUK4QWT89gVBMqVoTRFqAFUfkRkKSSupNR4XXexq9E_JWc5bAETN5Ixcrj7jbug3sVvEsFjGve_zOTkJdpf9xc-dk7f71evysVo_Pzwt79ZVw1D2VR24DiAwSN1C61hDhaXBautQQwvWes8VCiqV941rmPN6hB1Fp8EqYHNyPfUeUvwYfO7NNg6pKy8NFUrxmgtOC4UT1aSYc_LBHNJmb9OXQTDjdvNne8nQKZML27379Nv8f-gbuYZY4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2577494542</pqid></control><display><type>article</type><title>Evolution of Comets</title><source>SpringerLink Journals</source><creator>Tutukov, A. V. ; Sizova, M. D. ; Vereshchagin, S. V.</creator><creatorcontrib>Tutukov, A. V. ; Sizova, M. D. ; Vereshchagin, S. V.</creatorcontrib><description>Comets that were ejected by giant planets to the Oort cloud during the formation and evolution of planetary systems may get back to the orbits in the vicinity of the Sun with a time lapse under the gravitational influence of the same planets. The evaporation of cometary nuclei due to the solar radiation impact results in releasing a solid dust component from comets. We consider a numerical model of comet transformation to dust streams that move along cometary orbits around the Sun. The lifetime of dust streams, which are formed on the orbits of their parent comets, has been estimated. In the other planetary systems, which contain giant planets satisfying the condition (where m and M are the masses of a planet and a star, respectively, r is the radius of a planet, and a is the semimajor axis of its orbit around the star), comets evolve in the same way. From the analysis of the interaction of the Oort cloud objects and the Sun with the passing-by stars and stellar clusters, it follows that a dense part of the Oort cloud is apparently limited in size; and we estimate this size.</description><identifier>ISSN: 1063-7729</identifier><identifier>EISSN: 1562-6881</identifier><identifier>DOI: 10.1134/S1063772921090079</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Astronomy ; Cloud formation ; Comet nuclei ; Comets ; Dust ; Evaporation ; Gravitational effects ; Gravity effects ; Mathematical models ; Numerical models ; Observations and Techniques ; Oort cloud ; Orbits ; Physics ; Physics and Astronomy ; Planet formation ; Planetary evolution ; Planetary systems ; Planets ; Solar radiation ; Star clusters ; Stars ; Stellar evolution ; Streams</subject><ispartof>Astronomy reports, 2021-09, Vol.65 (9), p.884-896</ispartof><rights>Pleiades Publishing, Ltd. 2021. ISSN 1063-7729, Astronomy Reports, 2021, Vol. 65, No. 9, pp. 884–896. © Pleiades Publishing, Ltd., 2021. Russian Text © The Author(s), 2021, published in Astronomicheskii Zhurnal, 2021, Vol. 98, No. 9, pp. 780–792.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-9f48f051f68d0db3c25a2fa8ab180d0aaee4715267eecbc3be851f6b21b80a703</citedby><cites>FETCH-LOGICAL-c316t-9f48f051f68d0db3c25a2fa8ab180d0aaee4715267eecbc3be851f6b21b80a703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063772921090079$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063772921090079$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Tutukov, A. V.</creatorcontrib><creatorcontrib>Sizova, M. D.</creatorcontrib><creatorcontrib>Vereshchagin, S. V.</creatorcontrib><title>Evolution of Comets</title><title>Astronomy reports</title><addtitle>Astron. Rep</addtitle><description>Comets that were ejected by giant planets to the Oort cloud during the formation and evolution of planetary systems may get back to the orbits in the vicinity of the Sun with a time lapse under the gravitational influence of the same planets. The evaporation of cometary nuclei due to the solar radiation impact results in releasing a solid dust component from comets. We consider a numerical model of comet transformation to dust streams that move along cometary orbits around the Sun. The lifetime of dust streams, which are formed on the orbits of their parent comets, has been estimated. In the other planetary systems, which contain giant planets satisfying the condition (where m and M are the masses of a planet and a star, respectively, r is the radius of a planet, and a is the semimajor axis of its orbit around the star), comets evolve in the same way. From the analysis of the interaction of the Oort cloud objects and the Sun with the passing-by stars and stellar clusters, it follows that a dense part of the Oort cloud is apparently limited in size; and we estimate this size.</description><subject>Astronomy</subject><subject>Cloud formation</subject><subject>Comet nuclei</subject><subject>Comets</subject><subject>Dust</subject><subject>Evaporation</subject><subject>Gravitational effects</subject><subject>Gravity effects</subject><subject>Mathematical models</subject><subject>Numerical models</subject><subject>Observations and Techniques</subject><subject>Oort cloud</subject><subject>Orbits</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Planet formation</subject><subject>Planetary evolution</subject><subject>Planetary systems</subject><subject>Planets</subject><subject>Solar radiation</subject><subject>Star clusters</subject><subject>Stars</subject><subject>Stellar evolution</subject><subject>Streams</subject><issn>1063-7729</issn><issn>1562-6881</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1j81LAzEUxIMoWKsnT94Knlffy_cepdQPKHhQzyHZTaSl3dRkV_C_N8sKHsTTG5jfzGMIuUK4QWT89gVBMqVoTRFqAFUfkRkKSSupNR4XXexq9E_JWc5bAETN5Ixcrj7jbug3sVvEsFjGve_zOTkJdpf9xc-dk7f71evysVo_Pzwt79ZVw1D2VR24DiAwSN1C61hDhaXBautQQwvWes8VCiqV941rmPN6hB1Fp8EqYHNyPfUeUvwYfO7NNg6pKy8NFUrxmgtOC4UT1aSYc_LBHNJmb9OXQTDjdvNne8nQKZML27379Nv8f-gbuYZY4Q</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Tutukov, A. V.</creator><creator>Sizova, M. D.</creator><creator>Vereshchagin, S. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope></search><sort><creationdate>20210901</creationdate><title>Evolution of Comets</title><author>Tutukov, A. V. ; Sizova, M. D. ; Vereshchagin, S. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-9f48f051f68d0db3c25a2fa8ab180d0aaee4715267eecbc3be851f6b21b80a703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Astronomy</topic><topic>Cloud formation</topic><topic>Comet nuclei</topic><topic>Comets</topic><topic>Dust</topic><topic>Evaporation</topic><topic>Gravitational effects</topic><topic>Gravity effects</topic><topic>Mathematical models</topic><topic>Numerical models</topic><topic>Observations and Techniques</topic><topic>Oort cloud</topic><topic>Orbits</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Planet formation</topic><topic>Planetary evolution</topic><topic>Planetary systems</topic><topic>Planets</topic><topic>Solar radiation</topic><topic>Star clusters</topic><topic>Stars</topic><topic>Stellar evolution</topic><topic>Streams</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tutukov, A. V.</creatorcontrib><creatorcontrib>Sizova, M. D.</creatorcontrib><creatorcontrib>Vereshchagin, S. V.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Astronomy reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tutukov, A. V.</au><au>Sizova, M. D.</au><au>Vereshchagin, S. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of Comets</atitle><jtitle>Astronomy reports</jtitle><stitle>Astron. Rep</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>65</volume><issue>9</issue><spage>884</spage><epage>896</epage><pages>884-896</pages><issn>1063-7729</issn><eissn>1562-6881</eissn><abstract>Comets that were ejected by giant planets to the Oort cloud during the formation and evolution of planetary systems may get back to the orbits in the vicinity of the Sun with a time lapse under the gravitational influence of the same planets. The evaporation of cometary nuclei due to the solar radiation impact results in releasing a solid dust component from comets. We consider a numerical model of comet transformation to dust streams that move along cometary orbits around the Sun. The lifetime of dust streams, which are formed on the orbits of their parent comets, has been estimated. In the other planetary systems, which contain giant planets satisfying the condition (where m and M are the masses of a planet and a star, respectively, r is the radius of a planet, and a is the semimajor axis of its orbit around the star), comets evolve in the same way. From the analysis of the interaction of the Oort cloud objects and the Sun with the passing-by stars and stellar clusters, it follows that a dense part of the Oort cloud is apparently limited in size; and we estimate this size.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063772921090079</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7729
ispartof Astronomy reports, 2021-09, Vol.65 (9), p.884-896
issn 1063-7729
1562-6881
language eng
recordid cdi_proquest_journals_2577494542
source SpringerLink Journals
subjects Astronomy
Cloud formation
Comet nuclei
Comets
Dust
Evaporation
Gravitational effects
Gravity effects
Mathematical models
Numerical models
Observations and Techniques
Oort cloud
Orbits
Physics
Physics and Astronomy
Planet formation
Planetary evolution
Planetary systems
Planets
Solar radiation
Star clusters
Stars
Stellar evolution
Streams
title Evolution of Comets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T00%3A03%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20Comets&rft.jtitle=Astronomy%20reports&rft.au=Tutukov,%20A.%20V.&rft.date=2021-09-01&rft.volume=65&rft.issue=9&rft.spage=884&rft.epage=896&rft.pages=884-896&rft.issn=1063-7729&rft.eissn=1562-6881&rft_id=info:doi/10.1134/S1063772921090079&rft_dat=%3Cproquest_cross%3E2577494542%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2577494542&rft_id=info:pmid/&rfr_iscdi=true