A seasonal algorithm of the snow-covered area fraction for mountainous terrain

The snow cover spatial variability in mountainous terrain changes considerably over the course of a snow season. In this context, fractional snow-covered area (fSCA) is an essential model parameter characterizing how much ground surface in a grid cell is currently covered by snow. We present a seaso...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The cryosphere 2021-09, Vol.15 (9), p.4607-4624
Hauptverfasser: Helbig, Nora, Schirmer, Michael, Magnusson, Jan, Mäder, Flavia, van Herwijnen, Alec, Quéno, Louis, Bühler, Yves, Deems, Jeff S, Gascoin, Simon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4624
container_issue 9
container_start_page 4607
container_title The cryosphere
container_volume 15
creator Helbig, Nora
Schirmer, Michael
Magnusson, Jan
Mäder, Flavia
van Herwijnen, Alec
Quéno, Louis
Bühler, Yves
Deems, Jeff S
Gascoin, Simon
description The snow cover spatial variability in mountainous terrain changes considerably over the course of a snow season. In this context, fractional snow-covered area (fSCA) is an essential model parameter characterizing how much ground surface in a grid cell is currently covered by snow. We present a seasonal fSCA algorithm using a recent scale-independent fSCA parameterization. For the seasonal implementation, we track snow depth (HS) and snow water equivalent (SWE) and account for several alternating accumulation–ablation phases. Besides tracking HS and SWE, the seasonal fSCA algorithm only requires subgrid terrain parameters from a fine-scale summer digital elevation model. We implemented the new algorithm in a multilayer energy balance snow cover model. To evaluate the spatiotemporal changes in modeled fSCA, we compiled three independent fSCA data sets derived from airborne-acquired fine-scale HS data and from satellite and terrestrial imagery. Overall, modeled daily 1 km fSCA values had normalized root mean square errors of 7 %, 12 % and 21 % for the three data sets, and some seasonal trends were identified. Comparing our algorithm performances to the performances of the CLM5.0 fSCA algorithm implemented in the multilayer snow cover model demonstrated that our full seasonal fSCA algorithm better represented seasonal trends. Overall, the results suggest that our seasonal fSCA algorithm can be applied in other geographic regions by any snow model application.
doi_str_mv 10.5194/tc-15-4607-2021
format Article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2577374054</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A677252236</galeid><doaj_id>oai_doaj_org_article_ba88ce0bac794d97b82d67b7041a9e00</doaj_id><sourcerecordid>A677252236</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-97226e7facd0b152dd3e0c6d3d7e4bf78020ec2e3227b8cbc0556e0358b281f93</originalsourceid><addsrcrecordid>eNptks2LFDEQxRtRcF09ew142kPvVr463cdhUXdgUPDjHNJJZSZDd2dNMrv635txRB2QOlTx-NUjKV7TvKZwLekgboptqWxFB6plwOiT5oIOg2hBMPH0n_l58yLnPUDHBhAXzYcVyWhyXMxEzLSNKZTdTKInZYckL_GxtfEBEzpiEhrik7ElxIX4mMgcD0sxYYmHTAqmVMeXzTNvpoyvfvfL5uu7t19u79rNx_fr29WmtZLS0g6KsQ6VN9bBSCVzjiPYznGnUIxe9cAALUPOmBp7O1qQskPgsh9ZT_3AL5v1yddFs9f3Kcwm_dDRBP1LiGmrTSrBTqhH0_cWYTRWDcIN1Y-5To0KBDUDAlSvq5PXzkxnVnerjT5qwLkCruQDreybE3uf4rcD5qL38ZDq8bJmUimuBEjxl9qa-oCw-Fjq3eaQrV51SjHJGO8qdf0fqpbDOdi4oA9VP1u4OluoTMHvZWsOOev150_n7M2JtSnmnND_-RkFfcyLLlZTqY950ce88J82Ja9j</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2577374054</pqid></control><display><type>article</type><title>A seasonal algorithm of the snow-covered area fraction for mountainous terrain</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Helbig, Nora ; Schirmer, Michael ; Magnusson, Jan ; Mäder, Flavia ; van Herwijnen, Alec ; Quéno, Louis ; Bühler, Yves ; Deems, Jeff S ; Gascoin, Simon</creator><creatorcontrib>Helbig, Nora ; Schirmer, Michael ; Magnusson, Jan ; Mäder, Flavia ; van Herwijnen, Alec ; Quéno, Louis ; Bühler, Yves ; Deems, Jeff S ; Gascoin, Simon</creatorcontrib><description>The snow cover spatial variability in mountainous terrain changes considerably over the course of a snow season. In this context, fractional snow-covered area (fSCA) is an essential model parameter characterizing how much ground surface in a grid cell is currently covered by snow. We present a seasonal fSCA algorithm using a recent scale-independent fSCA parameterization. For the seasonal implementation, we track snow depth (HS) and snow water equivalent (SWE) and account for several alternating accumulation–ablation phases. Besides tracking HS and SWE, the seasonal fSCA algorithm only requires subgrid terrain parameters from a fine-scale summer digital elevation model. We implemented the new algorithm in a multilayer energy balance snow cover model. To evaluate the spatiotemporal changes in modeled fSCA, we compiled three independent fSCA data sets derived from airborne-acquired fine-scale HS data and from satellite and terrestrial imagery. Overall, modeled daily 1 km fSCA values had normalized root mean square errors of 7 %, 12 % and 21 % for the three data sets, and some seasonal trends were identified. Comparing our algorithm performances to the performances of the CLM5.0 fSCA algorithm implemented in the multilayer snow cover model demonstrated that our full seasonal fSCA algorithm better represented seasonal trends. Overall, the results suggest that our seasonal fSCA algorithm can be applied in other geographic regions by any snow model application.</description><identifier>ISSN: 1994-0424</identifier><identifier>ISSN: 1994-0416</identifier><identifier>EISSN: 1994-0424</identifier><identifier>EISSN: 1994-0416</identifier><identifier>DOI: 10.5194/tc-15-4607-2021</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Ablation ; Algorithms ; Analysis ; Continental interfaces, environment ; Data acquisition ; Datasets ; Digital Elevation Models ; Energy balance ; Imagery ; Mountains ; Multilayers ; Parameterization ; Parameters ; Precipitation ; Satellite imagery ; Scale models ; Sciences of the Universe ; Seasons ; Snow ; Snow accumulation ; Snow cover ; Snow depth ; Snow-water equivalent ; Spatial variability ; Spatial variations ; Standard deviation ; Terrain ; Topography ; Tracking ; Trends ; Water depth</subject><ispartof>The cryosphere, 2021-09, Vol.15 (9), p.4607-4624</ispartof><rights>COPYRIGHT 2021 Copernicus GmbH</rights><rights>2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-97226e7facd0b152dd3e0c6d3d7e4bf78020ec2e3227b8cbc0556e0358b281f93</citedby><cites>FETCH-LOGICAL-c511t-97226e7facd0b152dd3e0c6d3d7e4bf78020ec2e3227b8cbc0556e0358b281f93</cites><orcidid>0000-0002-1097-8550 ; 0000-0002-0815-2717 ; 0000-0002-3265-8670 ; 0000-0003-3120-6805 ; 0000-0002-4996-6768 ; 0000-0002-8663-7306 ; 0000-0003-4446-183X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,860,881,2096,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03370375$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Helbig, Nora</creatorcontrib><creatorcontrib>Schirmer, Michael</creatorcontrib><creatorcontrib>Magnusson, Jan</creatorcontrib><creatorcontrib>Mäder, Flavia</creatorcontrib><creatorcontrib>van Herwijnen, Alec</creatorcontrib><creatorcontrib>Quéno, Louis</creatorcontrib><creatorcontrib>Bühler, Yves</creatorcontrib><creatorcontrib>Deems, Jeff S</creatorcontrib><creatorcontrib>Gascoin, Simon</creatorcontrib><title>A seasonal algorithm of the snow-covered area fraction for mountainous terrain</title><title>The cryosphere</title><description>The snow cover spatial variability in mountainous terrain changes considerably over the course of a snow season. In this context, fractional snow-covered area (fSCA) is an essential model parameter characterizing how much ground surface in a grid cell is currently covered by snow. We present a seasonal fSCA algorithm using a recent scale-independent fSCA parameterization. For the seasonal implementation, we track snow depth (HS) and snow water equivalent (SWE) and account for several alternating accumulation–ablation phases. Besides tracking HS and SWE, the seasonal fSCA algorithm only requires subgrid terrain parameters from a fine-scale summer digital elevation model. We implemented the new algorithm in a multilayer energy balance snow cover model. To evaluate the spatiotemporal changes in modeled fSCA, we compiled three independent fSCA data sets derived from airborne-acquired fine-scale HS data and from satellite and terrestrial imagery. Overall, modeled daily 1 km fSCA values had normalized root mean square errors of 7 %, 12 % and 21 % for the three data sets, and some seasonal trends were identified. Comparing our algorithm performances to the performances of the CLM5.0 fSCA algorithm implemented in the multilayer snow cover model demonstrated that our full seasonal fSCA algorithm better represented seasonal trends. Overall, the results suggest that our seasonal fSCA algorithm can be applied in other geographic regions by any snow model application.</description><subject>Ablation</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Continental interfaces, environment</subject><subject>Data acquisition</subject><subject>Datasets</subject><subject>Digital Elevation Models</subject><subject>Energy balance</subject><subject>Imagery</subject><subject>Mountains</subject><subject>Multilayers</subject><subject>Parameterization</subject><subject>Parameters</subject><subject>Precipitation</subject><subject>Satellite imagery</subject><subject>Scale models</subject><subject>Sciences of the Universe</subject><subject>Seasons</subject><subject>Snow</subject><subject>Snow accumulation</subject><subject>Snow cover</subject><subject>Snow depth</subject><subject>Snow-water equivalent</subject><subject>Spatial variability</subject><subject>Spatial variations</subject><subject>Standard deviation</subject><subject>Terrain</subject><subject>Topography</subject><subject>Tracking</subject><subject>Trends</subject><subject>Water depth</subject><issn>1994-0424</issn><issn>1994-0416</issn><issn>1994-0424</issn><issn>1994-0416</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptks2LFDEQxRtRcF09ew142kPvVr463cdhUXdgUPDjHNJJZSZDd2dNMrv635txRB2QOlTx-NUjKV7TvKZwLekgboptqWxFB6plwOiT5oIOg2hBMPH0n_l58yLnPUDHBhAXzYcVyWhyXMxEzLSNKZTdTKInZYckL_GxtfEBEzpiEhrik7ElxIX4mMgcD0sxYYmHTAqmVMeXzTNvpoyvfvfL5uu7t19u79rNx_fr29WmtZLS0g6KsQ6VN9bBSCVzjiPYznGnUIxe9cAALUPOmBp7O1qQskPgsh9ZT_3AL5v1yddFs9f3Kcwm_dDRBP1LiGmrTSrBTqhH0_cWYTRWDcIN1Y-5To0KBDUDAlSvq5PXzkxnVnerjT5qwLkCruQDreybE3uf4rcD5qL38ZDq8bJmUimuBEjxl9qa-oCw-Fjq3eaQrV51SjHJGO8qdf0fqpbDOdi4oA9VP1u4OluoTMHvZWsOOev150_n7M2JtSnmnND_-RkFfcyLLlZTqY950ce88J82Ja9j</recordid><startdate>20210929</startdate><enddate>20210929</enddate><creator>Helbig, Nora</creator><creator>Schirmer, Michael</creator><creator>Magnusson, Jan</creator><creator>Mäder, Flavia</creator><creator>van Herwijnen, Alec</creator><creator>Quéno, Louis</creator><creator>Bühler, Yves</creator><creator>Deems, Jeff S</creator><creator>Gascoin, Simon</creator><general>Copernicus GmbH</general><general>Copernicus</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H95</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>1XC</scope><scope>VOOES</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1097-8550</orcidid><orcidid>https://orcid.org/0000-0002-0815-2717</orcidid><orcidid>https://orcid.org/0000-0002-3265-8670</orcidid><orcidid>https://orcid.org/0000-0003-3120-6805</orcidid><orcidid>https://orcid.org/0000-0002-4996-6768</orcidid><orcidid>https://orcid.org/0000-0002-8663-7306</orcidid><orcidid>https://orcid.org/0000-0003-4446-183X</orcidid></search><sort><creationdate>20210929</creationdate><title>A seasonal algorithm of the snow-covered area fraction for mountainous terrain</title><author>Helbig, Nora ; Schirmer, Michael ; Magnusson, Jan ; Mäder, Flavia ; van Herwijnen, Alec ; Quéno, Louis ; Bühler, Yves ; Deems, Jeff S ; Gascoin, Simon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-97226e7facd0b152dd3e0c6d3d7e4bf78020ec2e3227b8cbc0556e0358b281f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ablation</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Continental interfaces, environment</topic><topic>Data acquisition</topic><topic>Datasets</topic><topic>Digital Elevation Models</topic><topic>Energy balance</topic><topic>Imagery</topic><topic>Mountains</topic><topic>Multilayers</topic><topic>Parameterization</topic><topic>Parameters</topic><topic>Precipitation</topic><topic>Satellite imagery</topic><topic>Scale models</topic><topic>Sciences of the Universe</topic><topic>Seasons</topic><topic>Snow</topic><topic>Snow accumulation</topic><topic>Snow cover</topic><topic>Snow depth</topic><topic>Snow-water equivalent</topic><topic>Spatial variability</topic><topic>Spatial variations</topic><topic>Standard deviation</topic><topic>Terrain</topic><topic>Topography</topic><topic>Tracking</topic><topic>Trends</topic><topic>Water depth</topic><toplevel>online_resources</toplevel><creatorcontrib>Helbig, Nora</creatorcontrib><creatorcontrib>Schirmer, Michael</creatorcontrib><creatorcontrib>Magnusson, Jan</creatorcontrib><creatorcontrib>Mäder, Flavia</creatorcontrib><creatorcontrib>van Herwijnen, Alec</creatorcontrib><creatorcontrib>Quéno, Louis</creatorcontrib><creatorcontrib>Bühler, Yves</creatorcontrib><creatorcontrib>Deems, Jeff S</creatorcontrib><creatorcontrib>Gascoin, Simon</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The cryosphere</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Helbig, Nora</au><au>Schirmer, Michael</au><au>Magnusson, Jan</au><au>Mäder, Flavia</au><au>van Herwijnen, Alec</au><au>Quéno, Louis</au><au>Bühler, Yves</au><au>Deems, Jeff S</au><au>Gascoin, Simon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A seasonal algorithm of the snow-covered area fraction for mountainous terrain</atitle><jtitle>The cryosphere</jtitle><date>2021-09-29</date><risdate>2021</risdate><volume>15</volume><issue>9</issue><spage>4607</spage><epage>4624</epage><pages>4607-4624</pages><issn>1994-0424</issn><issn>1994-0416</issn><eissn>1994-0424</eissn><eissn>1994-0416</eissn><abstract>The snow cover spatial variability in mountainous terrain changes considerably over the course of a snow season. In this context, fractional snow-covered area (fSCA) is an essential model parameter characterizing how much ground surface in a grid cell is currently covered by snow. We present a seasonal fSCA algorithm using a recent scale-independent fSCA parameterization. For the seasonal implementation, we track snow depth (HS) and snow water equivalent (SWE) and account for several alternating accumulation–ablation phases. Besides tracking HS and SWE, the seasonal fSCA algorithm only requires subgrid terrain parameters from a fine-scale summer digital elevation model. We implemented the new algorithm in a multilayer energy balance snow cover model. To evaluate the spatiotemporal changes in modeled fSCA, we compiled three independent fSCA data sets derived from airborne-acquired fine-scale HS data and from satellite and terrestrial imagery. Overall, modeled daily 1 km fSCA values had normalized root mean square errors of 7 %, 12 % and 21 % for the three data sets, and some seasonal trends were identified. Comparing our algorithm performances to the performances of the CLM5.0 fSCA algorithm implemented in the multilayer snow cover model demonstrated that our full seasonal fSCA algorithm better represented seasonal trends. Overall, the results suggest that our seasonal fSCA algorithm can be applied in other geographic regions by any snow model application.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/tc-15-4607-2021</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-1097-8550</orcidid><orcidid>https://orcid.org/0000-0002-0815-2717</orcidid><orcidid>https://orcid.org/0000-0002-3265-8670</orcidid><orcidid>https://orcid.org/0000-0003-3120-6805</orcidid><orcidid>https://orcid.org/0000-0002-4996-6768</orcidid><orcidid>https://orcid.org/0000-0002-8663-7306</orcidid><orcidid>https://orcid.org/0000-0003-4446-183X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1994-0424
ispartof The cryosphere, 2021-09, Vol.15 (9), p.4607-4624
issn 1994-0424
1994-0416
1994-0424
1994-0416
language eng
recordid cdi_proquest_journals_2577374054
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Ablation
Algorithms
Analysis
Continental interfaces, environment
Data acquisition
Datasets
Digital Elevation Models
Energy balance
Imagery
Mountains
Multilayers
Parameterization
Parameters
Precipitation
Satellite imagery
Scale models
Sciences of the Universe
Seasons
Snow
Snow accumulation
Snow cover
Snow depth
Snow-water equivalent
Spatial variability
Spatial variations
Standard deviation
Terrain
Topography
Tracking
Trends
Water depth
title A seasonal algorithm of the snow-covered area fraction for mountainous terrain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T17%3A05%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20seasonal%20algorithm%20of%20the%20snow-covered%20area%20fraction%20for%20mountainous%20terrain&rft.jtitle=The%20cryosphere&rft.au=Helbig,%20Nora&rft.date=2021-09-29&rft.volume=15&rft.issue=9&rft.spage=4607&rft.epage=4624&rft.pages=4607-4624&rft.issn=1994-0424&rft.eissn=1994-0424&rft_id=info:doi/10.5194/tc-15-4607-2021&rft_dat=%3Cgale_doaj_%3EA677252236%3C/gale_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2577374054&rft_id=info:pmid/&rft_galeid=A677252236&rft_doaj_id=oai_doaj_org_article_ba88ce0bac794d97b82d67b7041a9e00&rfr_iscdi=true