A seasonal algorithm of the snow-covered area fraction for mountainous terrain
The snow cover spatial variability in mountainous terrain changes considerably over the course of a snow season. In this context, fractional snow-covered area (fSCA) is an essential model parameter characterizing how much ground surface in a grid cell is currently covered by snow. We present a seaso...
Gespeichert in:
Veröffentlicht in: | The cryosphere 2021-09, Vol.15 (9), p.4607-4624 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4624 |
---|---|
container_issue | 9 |
container_start_page | 4607 |
container_title | The cryosphere |
container_volume | 15 |
creator | Helbig, Nora Schirmer, Michael Magnusson, Jan Mäder, Flavia van Herwijnen, Alec Quéno, Louis Bühler, Yves Deems, Jeff S Gascoin, Simon |
description | The snow cover spatial variability in mountainous terrain changes considerably over the course of a snow season. In this context, fractional snow-covered area (fSCA) is an essential model parameter characterizing how much ground surface in a grid cell is currently covered by snow. We present a seasonal fSCA algorithm using a recent scale-independent fSCA parameterization. For the seasonal implementation, we track snow depth (HS) and snow water equivalent (SWE) and account for several alternating accumulation–ablation phases. Besides tracking HS and SWE, the seasonal fSCA algorithm only requires subgrid terrain parameters from a fine-scale summer digital elevation model. We implemented the new algorithm in a multilayer energy balance snow cover model. To evaluate the spatiotemporal changes in modeled fSCA, we compiled three independent fSCA data sets derived from airborne-acquired fine-scale HS data and from satellite and terrestrial imagery. Overall, modeled daily 1 km fSCA values had normalized root mean square errors of 7 %, 12 % and 21 % for the three data sets, and some seasonal trends were identified. Comparing our algorithm performances to the performances of the CLM5.0 fSCA algorithm implemented in the multilayer snow cover model demonstrated that our full seasonal fSCA algorithm better represented seasonal trends. Overall, the results suggest that our seasonal fSCA algorithm can be applied in other geographic regions by any snow model application. |
doi_str_mv | 10.5194/tc-15-4607-2021 |
format | Article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2577374054</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A677252236</galeid><doaj_id>oai_doaj_org_article_ba88ce0bac794d97b82d67b7041a9e00</doaj_id><sourcerecordid>A677252236</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-97226e7facd0b152dd3e0c6d3d7e4bf78020ec2e3227b8cbc0556e0358b281f93</originalsourceid><addsrcrecordid>eNptks2LFDEQxRtRcF09ew142kPvVr463cdhUXdgUPDjHNJJZSZDd2dNMrv635txRB2QOlTx-NUjKV7TvKZwLekgboptqWxFB6plwOiT5oIOg2hBMPH0n_l58yLnPUDHBhAXzYcVyWhyXMxEzLSNKZTdTKInZYckL_GxtfEBEzpiEhrik7ElxIX4mMgcD0sxYYmHTAqmVMeXzTNvpoyvfvfL5uu7t19u79rNx_fr29WmtZLS0g6KsQ6VN9bBSCVzjiPYznGnUIxe9cAALUPOmBp7O1qQskPgsh9ZT_3AL5v1yddFs9f3Kcwm_dDRBP1LiGmrTSrBTqhH0_cWYTRWDcIN1Y-5To0KBDUDAlSvq5PXzkxnVnerjT5qwLkCruQDreybE3uf4rcD5qL38ZDq8bJmUimuBEjxl9qa-oCw-Fjq3eaQrV51SjHJGO8qdf0fqpbDOdi4oA9VP1u4OluoTMHvZWsOOev150_n7M2JtSnmnND_-RkFfcyLLlZTqY950ce88J82Ja9j</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2577374054</pqid></control><display><type>article</type><title>A seasonal algorithm of the snow-covered area fraction for mountainous terrain</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Helbig, Nora ; Schirmer, Michael ; Magnusson, Jan ; Mäder, Flavia ; van Herwijnen, Alec ; Quéno, Louis ; Bühler, Yves ; Deems, Jeff S ; Gascoin, Simon</creator><creatorcontrib>Helbig, Nora ; Schirmer, Michael ; Magnusson, Jan ; Mäder, Flavia ; van Herwijnen, Alec ; Quéno, Louis ; Bühler, Yves ; Deems, Jeff S ; Gascoin, Simon</creatorcontrib><description>The snow cover spatial variability in mountainous terrain changes considerably over the course of a snow season. In this context, fractional snow-covered area (fSCA) is an essential model parameter characterizing how much ground surface in a grid cell is currently covered by snow. We present a seasonal fSCA algorithm using a recent scale-independent fSCA parameterization. For the seasonal implementation, we track snow depth (HS) and snow water equivalent (SWE) and account for several alternating accumulation–ablation phases. Besides tracking HS and SWE, the seasonal fSCA algorithm only requires subgrid terrain parameters from a fine-scale summer digital elevation model. We implemented the new algorithm in a multilayer energy balance snow cover model. To evaluate the spatiotemporal changes in modeled fSCA, we compiled three independent fSCA data sets derived from airborne-acquired fine-scale HS data and from satellite and terrestrial imagery. Overall, modeled daily 1 km fSCA values had normalized root mean square errors of 7 %, 12 % and 21 % for the three data sets, and some seasonal trends were identified. Comparing our algorithm performances to the performances of the CLM5.0 fSCA algorithm implemented in the multilayer snow cover model demonstrated that our full seasonal fSCA algorithm better represented seasonal trends. Overall, the results suggest that our seasonal fSCA algorithm can be applied in other geographic regions by any snow model application.</description><identifier>ISSN: 1994-0424</identifier><identifier>ISSN: 1994-0416</identifier><identifier>EISSN: 1994-0424</identifier><identifier>EISSN: 1994-0416</identifier><identifier>DOI: 10.5194/tc-15-4607-2021</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Ablation ; Algorithms ; Analysis ; Continental interfaces, environment ; Data acquisition ; Datasets ; Digital Elevation Models ; Energy balance ; Imagery ; Mountains ; Multilayers ; Parameterization ; Parameters ; Precipitation ; Satellite imagery ; Scale models ; Sciences of the Universe ; Seasons ; Snow ; Snow accumulation ; Snow cover ; Snow depth ; Snow-water equivalent ; Spatial variability ; Spatial variations ; Standard deviation ; Terrain ; Topography ; Tracking ; Trends ; Water depth</subject><ispartof>The cryosphere, 2021-09, Vol.15 (9), p.4607-4624</ispartof><rights>COPYRIGHT 2021 Copernicus GmbH</rights><rights>2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-97226e7facd0b152dd3e0c6d3d7e4bf78020ec2e3227b8cbc0556e0358b281f93</citedby><cites>FETCH-LOGICAL-c511t-97226e7facd0b152dd3e0c6d3d7e4bf78020ec2e3227b8cbc0556e0358b281f93</cites><orcidid>0000-0002-1097-8550 ; 0000-0002-0815-2717 ; 0000-0002-3265-8670 ; 0000-0003-3120-6805 ; 0000-0002-4996-6768 ; 0000-0002-8663-7306 ; 0000-0003-4446-183X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,860,881,2096,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03370375$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Helbig, Nora</creatorcontrib><creatorcontrib>Schirmer, Michael</creatorcontrib><creatorcontrib>Magnusson, Jan</creatorcontrib><creatorcontrib>Mäder, Flavia</creatorcontrib><creatorcontrib>van Herwijnen, Alec</creatorcontrib><creatorcontrib>Quéno, Louis</creatorcontrib><creatorcontrib>Bühler, Yves</creatorcontrib><creatorcontrib>Deems, Jeff S</creatorcontrib><creatorcontrib>Gascoin, Simon</creatorcontrib><title>A seasonal algorithm of the snow-covered area fraction for mountainous terrain</title><title>The cryosphere</title><description>The snow cover spatial variability in mountainous terrain changes considerably over the course of a snow season. In this context, fractional snow-covered area (fSCA) is an essential model parameter characterizing how much ground surface in a grid cell is currently covered by snow. We present a seasonal fSCA algorithm using a recent scale-independent fSCA parameterization. For the seasonal implementation, we track snow depth (HS) and snow water equivalent (SWE) and account for several alternating accumulation–ablation phases. Besides tracking HS and SWE, the seasonal fSCA algorithm only requires subgrid terrain parameters from a fine-scale summer digital elevation model. We implemented the new algorithm in a multilayer energy balance snow cover model. To evaluate the spatiotemporal changes in modeled fSCA, we compiled three independent fSCA data sets derived from airborne-acquired fine-scale HS data and from satellite and terrestrial imagery. Overall, modeled daily 1 km fSCA values had normalized root mean square errors of 7 %, 12 % and 21 % for the three data sets, and some seasonal trends were identified. Comparing our algorithm performances to the performances of the CLM5.0 fSCA algorithm implemented in the multilayer snow cover model demonstrated that our full seasonal fSCA algorithm better represented seasonal trends. Overall, the results suggest that our seasonal fSCA algorithm can be applied in other geographic regions by any snow model application.</description><subject>Ablation</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Continental interfaces, environment</subject><subject>Data acquisition</subject><subject>Datasets</subject><subject>Digital Elevation Models</subject><subject>Energy balance</subject><subject>Imagery</subject><subject>Mountains</subject><subject>Multilayers</subject><subject>Parameterization</subject><subject>Parameters</subject><subject>Precipitation</subject><subject>Satellite imagery</subject><subject>Scale models</subject><subject>Sciences of the Universe</subject><subject>Seasons</subject><subject>Snow</subject><subject>Snow accumulation</subject><subject>Snow cover</subject><subject>Snow depth</subject><subject>Snow-water equivalent</subject><subject>Spatial variability</subject><subject>Spatial variations</subject><subject>Standard deviation</subject><subject>Terrain</subject><subject>Topography</subject><subject>Tracking</subject><subject>Trends</subject><subject>Water depth</subject><issn>1994-0424</issn><issn>1994-0416</issn><issn>1994-0424</issn><issn>1994-0416</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptks2LFDEQxRtRcF09ew142kPvVr463cdhUXdgUPDjHNJJZSZDd2dNMrv635txRB2QOlTx-NUjKV7TvKZwLekgboptqWxFB6plwOiT5oIOg2hBMPH0n_l58yLnPUDHBhAXzYcVyWhyXMxEzLSNKZTdTKInZYckL_GxtfEBEzpiEhrik7ElxIX4mMgcD0sxYYmHTAqmVMeXzTNvpoyvfvfL5uu7t19u79rNx_fr29WmtZLS0g6KsQ6VN9bBSCVzjiPYznGnUIxe9cAALUPOmBp7O1qQskPgsh9ZT_3AL5v1yddFs9f3Kcwm_dDRBP1LiGmrTSrBTqhH0_cWYTRWDcIN1Y-5To0KBDUDAlSvq5PXzkxnVnerjT5qwLkCruQDreybE3uf4rcD5qL38ZDq8bJmUimuBEjxl9qa-oCw-Fjq3eaQrV51SjHJGO8qdf0fqpbDOdi4oA9VP1u4OluoTMHvZWsOOev150_n7M2JtSnmnND_-RkFfcyLLlZTqY950ce88J82Ja9j</recordid><startdate>20210929</startdate><enddate>20210929</enddate><creator>Helbig, Nora</creator><creator>Schirmer, Michael</creator><creator>Magnusson, Jan</creator><creator>Mäder, Flavia</creator><creator>van Herwijnen, Alec</creator><creator>Quéno, Louis</creator><creator>Bühler, Yves</creator><creator>Deems, Jeff S</creator><creator>Gascoin, Simon</creator><general>Copernicus GmbH</general><general>Copernicus</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H95</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>1XC</scope><scope>VOOES</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1097-8550</orcidid><orcidid>https://orcid.org/0000-0002-0815-2717</orcidid><orcidid>https://orcid.org/0000-0002-3265-8670</orcidid><orcidid>https://orcid.org/0000-0003-3120-6805</orcidid><orcidid>https://orcid.org/0000-0002-4996-6768</orcidid><orcidid>https://orcid.org/0000-0002-8663-7306</orcidid><orcidid>https://orcid.org/0000-0003-4446-183X</orcidid></search><sort><creationdate>20210929</creationdate><title>A seasonal algorithm of the snow-covered area fraction for mountainous terrain</title><author>Helbig, Nora ; Schirmer, Michael ; Magnusson, Jan ; Mäder, Flavia ; van Herwijnen, Alec ; Quéno, Louis ; Bühler, Yves ; Deems, Jeff S ; Gascoin, Simon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-97226e7facd0b152dd3e0c6d3d7e4bf78020ec2e3227b8cbc0556e0358b281f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ablation</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Continental interfaces, environment</topic><topic>Data acquisition</topic><topic>Datasets</topic><topic>Digital Elevation Models</topic><topic>Energy balance</topic><topic>Imagery</topic><topic>Mountains</topic><topic>Multilayers</topic><topic>Parameterization</topic><topic>Parameters</topic><topic>Precipitation</topic><topic>Satellite imagery</topic><topic>Scale models</topic><topic>Sciences of the Universe</topic><topic>Seasons</topic><topic>Snow</topic><topic>Snow accumulation</topic><topic>Snow cover</topic><topic>Snow depth</topic><topic>Snow-water equivalent</topic><topic>Spatial variability</topic><topic>Spatial variations</topic><topic>Standard deviation</topic><topic>Terrain</topic><topic>Topography</topic><topic>Tracking</topic><topic>Trends</topic><topic>Water depth</topic><toplevel>online_resources</toplevel><creatorcontrib>Helbig, Nora</creatorcontrib><creatorcontrib>Schirmer, Michael</creatorcontrib><creatorcontrib>Magnusson, Jan</creatorcontrib><creatorcontrib>Mäder, Flavia</creatorcontrib><creatorcontrib>van Herwijnen, Alec</creatorcontrib><creatorcontrib>Quéno, Louis</creatorcontrib><creatorcontrib>Bühler, Yves</creatorcontrib><creatorcontrib>Deems, Jeff S</creatorcontrib><creatorcontrib>Gascoin, Simon</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The cryosphere</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Helbig, Nora</au><au>Schirmer, Michael</au><au>Magnusson, Jan</au><au>Mäder, Flavia</au><au>van Herwijnen, Alec</au><au>Quéno, Louis</au><au>Bühler, Yves</au><au>Deems, Jeff S</au><au>Gascoin, Simon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A seasonal algorithm of the snow-covered area fraction for mountainous terrain</atitle><jtitle>The cryosphere</jtitle><date>2021-09-29</date><risdate>2021</risdate><volume>15</volume><issue>9</issue><spage>4607</spage><epage>4624</epage><pages>4607-4624</pages><issn>1994-0424</issn><issn>1994-0416</issn><eissn>1994-0424</eissn><eissn>1994-0416</eissn><abstract>The snow cover spatial variability in mountainous terrain changes considerably over the course of a snow season. In this context, fractional snow-covered area (fSCA) is an essential model parameter characterizing how much ground surface in a grid cell is currently covered by snow. We present a seasonal fSCA algorithm using a recent scale-independent fSCA parameterization. For the seasonal implementation, we track snow depth (HS) and snow water equivalent (SWE) and account for several alternating accumulation–ablation phases. Besides tracking HS and SWE, the seasonal fSCA algorithm only requires subgrid terrain parameters from a fine-scale summer digital elevation model. We implemented the new algorithm in a multilayer energy balance snow cover model. To evaluate the spatiotemporal changes in modeled fSCA, we compiled three independent fSCA data sets derived from airborne-acquired fine-scale HS data and from satellite and terrestrial imagery. Overall, modeled daily 1 km fSCA values had normalized root mean square errors of 7 %, 12 % and 21 % for the three data sets, and some seasonal trends were identified. Comparing our algorithm performances to the performances of the CLM5.0 fSCA algorithm implemented in the multilayer snow cover model demonstrated that our full seasonal fSCA algorithm better represented seasonal trends. Overall, the results suggest that our seasonal fSCA algorithm can be applied in other geographic regions by any snow model application.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/tc-15-4607-2021</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-1097-8550</orcidid><orcidid>https://orcid.org/0000-0002-0815-2717</orcidid><orcidid>https://orcid.org/0000-0002-3265-8670</orcidid><orcidid>https://orcid.org/0000-0003-3120-6805</orcidid><orcidid>https://orcid.org/0000-0002-4996-6768</orcidid><orcidid>https://orcid.org/0000-0002-8663-7306</orcidid><orcidid>https://orcid.org/0000-0003-4446-183X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1994-0424 |
ispartof | The cryosphere, 2021-09, Vol.15 (9), p.4607-4624 |
issn | 1994-0424 1994-0416 1994-0424 1994-0416 |
language | eng |
recordid | cdi_proquest_journals_2577374054 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Ablation Algorithms Analysis Continental interfaces, environment Data acquisition Datasets Digital Elevation Models Energy balance Imagery Mountains Multilayers Parameterization Parameters Precipitation Satellite imagery Scale models Sciences of the Universe Seasons Snow Snow accumulation Snow cover Snow depth Snow-water equivalent Spatial variability Spatial variations Standard deviation Terrain Topography Tracking Trends Water depth |
title | A seasonal algorithm of the snow-covered area fraction for mountainous terrain |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T17%3A05%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20seasonal%20algorithm%20of%20the%20snow-covered%20area%20fraction%20for%20mountainous%20terrain&rft.jtitle=The%20cryosphere&rft.au=Helbig,%20Nora&rft.date=2021-09-29&rft.volume=15&rft.issue=9&rft.spage=4607&rft.epage=4624&rft.pages=4607-4624&rft.issn=1994-0424&rft.eissn=1994-0424&rft_id=info:doi/10.5194/tc-15-4607-2021&rft_dat=%3Cgale_doaj_%3EA677252236%3C/gale_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2577374054&rft_id=info:pmid/&rft_galeid=A677252236&rft_doaj_id=oai_doaj_org_article_ba88ce0bac794d97b82d67b7041a9e00&rfr_iscdi=true |