Complete characterization of sub-Coulomb-barrier tunnelling with phase-of-phase attoclock

Laser-induced electron tunnelling—which triggers a broad range of ultrafast phenomena such as the generation of attosecond light pulses, photoelectron diffraction and holography—has laid the foundation for strong-field physics and attosecond science. Using the attoclock constructed by single-colour...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature photonics 2021-10, Vol.15 (10), p.765-771
Hauptverfasser: Han, Meng, Ge, Peipei, Wang, Jiguo, Guo, Zhenning, Fang, Yiqi, Ma, Xueyan, Yu, Xiaoyang, Deng, Yongkai, Wörner, Hans Jakob, Gong, Qihuang, Liu, Yunquan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 771
container_issue 10
container_start_page 765
container_title Nature photonics
container_volume 15
creator Han, Meng
Ge, Peipei
Wang, Jiguo
Guo, Zhenning
Fang, Yiqi
Ma, Xueyan
Yu, Xiaoyang
Deng, Yongkai
Wörner, Hans Jakob
Gong, Qihuang
Liu, Yunquan
description Laser-induced electron tunnelling—which triggers a broad range of ultrafast phenomena such as the generation of attosecond light pulses, photoelectron diffraction and holography—has laid the foundation for strong-field physics and attosecond science. Using the attoclock constructed by single-colour elliptically polarized laser fields, previous experiments have measured the tunnelling rates, exit positions, exit velocities and delay times for some specific electron trajectories, which are mostly created at the field peak instant, that is, when the laser electric field and the formed potential barrier are stationary in terms of the derivative versus time. From the view of wave-particle dualism, the electron phase under a classically forbidden, tunnelling barrier has not been measured, which is at the heart of quantum tunnelling physics. Here we present a robust measurement of tunnelling dynamics including the electron sub-barrier phase and amplitude. We combine the attoclock technique with two-colour phase-of-phase (POP) spectroscopy to accurately calibrate the angular streaking relation and to probe the non-stationary tunnelling dynamics by manipulating a rapidly changing potential barrier. This POP attoclock directly links the measured phase of the two-colour relative phase with the ionization instant for the photoelectron with any final momentum on the detector, allowing us to reconstruct the imaginary tunnelling time and the accumulated phase under the barrier. The POP attoclock provides a general time-resolved approach to accessing the underlying quantum dynamics in intense light–matter interactions. Electron non-stationary tunnelling dynamics is probed by the attoclock with the two-colour phase-of-phase photoelectron spectroscopy. Contrary to the case of static tunnelling, angle-to-time mapping in attoclock is found to be not angularly uniform.
doi_str_mv 10.1038/s41566-021-00842-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2577214643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2577214643</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-8384f449cbd481e9ac9d22f5808a9bb3fbc694c81eca6cbe05610cbaa9ff495c3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI6-gKuC62huTZOlFG8w4EYXrkKSSaYdO01NUkSf3joV3bk6P5z_Ah8A5xhdYkTFVWK45BwigiFCghFYHYAFrpiETEh6-KtFeQxOUtoiVFJJyAK81GE3dC67wjY6aptdbD91bkNfBF-k0cA6jF3YGWh0jK2LRR773nVd22-K9zY3xdDo5GDwcC8KnXOwXbCvp-DI6y65s5-7BM-3N0_1PVw93j3U1ytoKacZCiqYZ0xas2YCO6mtXBPiS4GElsZQbyyXzE4vq7k1DpUcI2u0lt4zWVq6BBdz7xDD2-hSVtswxn6aVKSsKoIZZ3RykdllY0gpOq-G2O50_FAYqW-EakaoJoRqj1BVU4jOoTSZ-42Lf9X_pL4AjVB2Jw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2577214643</pqid></control><display><type>article</type><title>Complete characterization of sub-Coulomb-barrier tunnelling with phase-of-phase attoclock</title><source>SpringerLink Journals</source><source>Nature</source><creator>Han, Meng ; Ge, Peipei ; Wang, Jiguo ; Guo, Zhenning ; Fang, Yiqi ; Ma, Xueyan ; Yu, Xiaoyang ; Deng, Yongkai ; Wörner, Hans Jakob ; Gong, Qihuang ; Liu, Yunquan</creator><creatorcontrib>Han, Meng ; Ge, Peipei ; Wang, Jiguo ; Guo, Zhenning ; Fang, Yiqi ; Ma, Xueyan ; Yu, Xiaoyang ; Deng, Yongkai ; Wörner, Hans Jakob ; Gong, Qihuang ; Liu, Yunquan</creatorcontrib><description>Laser-induced electron tunnelling—which triggers a broad range of ultrafast phenomena such as the generation of attosecond light pulses, photoelectron diffraction and holography—has laid the foundation for strong-field physics and attosecond science. Using the attoclock constructed by single-colour elliptically polarized laser fields, previous experiments have measured the tunnelling rates, exit positions, exit velocities and delay times for some specific electron trajectories, which are mostly created at the field peak instant, that is, when the laser electric field and the formed potential barrier are stationary in terms of the derivative versus time. From the view of wave-particle dualism, the electron phase under a classically forbidden, tunnelling barrier has not been measured, which is at the heart of quantum tunnelling physics. Here we present a robust measurement of tunnelling dynamics including the electron sub-barrier phase and amplitude. We combine the attoclock technique with two-colour phase-of-phase (POP) spectroscopy to accurately calibrate the angular streaking relation and to probe the non-stationary tunnelling dynamics by manipulating a rapidly changing potential barrier. This POP attoclock directly links the measured phase of the two-colour relative phase with the ionization instant for the photoelectron with any final momentum on the detector, allowing us to reconstruct the imaginary tunnelling time and the accumulated phase under the barrier. The POP attoclock provides a general time-resolved approach to accessing the underlying quantum dynamics in intense light–matter interactions. Electron non-stationary tunnelling dynamics is probed by the attoclock with the two-colour phase-of-phase photoelectron spectroscopy. Contrary to the case of static tunnelling, angle-to-time mapping in attoclock is found to be not angularly uniform.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/s41566-021-00842-7</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/125 ; 639/624/400/584 ; 639/766/36/2796 ; Applied and Technical Physics ; Color ; Delay time ; Dynamics ; Electric fields ; Electron trajectories ; Electron tunneling ; Holography ; Ionization ; Lasers ; Light diffraction ; Photoelectron spectroscopy ; Photoelectrons ; Physics ; Physics and Astronomy ; Potential barriers ; Quantum Physics ; Quantum tunnelling ; Spectroscopy ; Spectrum analysis</subject><ispartof>Nature photonics, 2021-10, Vol.15 (10), p.765-771</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-8384f449cbd481e9ac9d22f5808a9bb3fbc694c81eca6cbe05610cbaa9ff495c3</citedby><cites>FETCH-LOGICAL-c363t-8384f449cbd481e9ac9d22f5808a9bb3fbc694c81eca6cbe05610cbaa9ff495c3</cites><orcidid>0000-0001-5307-9638 ; 0000-0003-1137-7236</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41566-021-00842-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41566-021-00842-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Han, Meng</creatorcontrib><creatorcontrib>Ge, Peipei</creatorcontrib><creatorcontrib>Wang, Jiguo</creatorcontrib><creatorcontrib>Guo, Zhenning</creatorcontrib><creatorcontrib>Fang, Yiqi</creatorcontrib><creatorcontrib>Ma, Xueyan</creatorcontrib><creatorcontrib>Yu, Xiaoyang</creatorcontrib><creatorcontrib>Deng, Yongkai</creatorcontrib><creatorcontrib>Wörner, Hans Jakob</creatorcontrib><creatorcontrib>Gong, Qihuang</creatorcontrib><creatorcontrib>Liu, Yunquan</creatorcontrib><title>Complete characterization of sub-Coulomb-barrier tunnelling with phase-of-phase attoclock</title><title>Nature photonics</title><addtitle>Nat. Photon</addtitle><description>Laser-induced electron tunnelling—which triggers a broad range of ultrafast phenomena such as the generation of attosecond light pulses, photoelectron diffraction and holography—has laid the foundation for strong-field physics and attosecond science. Using the attoclock constructed by single-colour elliptically polarized laser fields, previous experiments have measured the tunnelling rates, exit positions, exit velocities and delay times for some specific electron trajectories, which are mostly created at the field peak instant, that is, when the laser electric field and the formed potential barrier are stationary in terms of the derivative versus time. From the view of wave-particle dualism, the electron phase under a classically forbidden, tunnelling barrier has not been measured, which is at the heart of quantum tunnelling physics. Here we present a robust measurement of tunnelling dynamics including the electron sub-barrier phase and amplitude. We combine the attoclock technique with two-colour phase-of-phase (POP) spectroscopy to accurately calibrate the angular streaking relation and to probe the non-stationary tunnelling dynamics by manipulating a rapidly changing potential barrier. This POP attoclock directly links the measured phase of the two-colour relative phase with the ionization instant for the photoelectron with any final momentum on the detector, allowing us to reconstruct the imaginary tunnelling time and the accumulated phase under the barrier. The POP attoclock provides a general time-resolved approach to accessing the underlying quantum dynamics in intense light–matter interactions. Electron non-stationary tunnelling dynamics is probed by the attoclock with the two-colour phase-of-phase photoelectron spectroscopy. Contrary to the case of static tunnelling, angle-to-time mapping in attoclock is found to be not angularly uniform.</description><subject>140/125</subject><subject>639/624/400/584</subject><subject>639/766/36/2796</subject><subject>Applied and Technical Physics</subject><subject>Color</subject><subject>Delay time</subject><subject>Dynamics</subject><subject>Electric fields</subject><subject>Electron trajectories</subject><subject>Electron tunneling</subject><subject>Holography</subject><subject>Ionization</subject><subject>Lasers</subject><subject>Light diffraction</subject><subject>Photoelectron spectroscopy</subject><subject>Photoelectrons</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Potential barriers</subject><subject>Quantum Physics</subject><subject>Quantum tunnelling</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMtKxDAUhoMoOI6-gKuC62huTZOlFG8w4EYXrkKSSaYdO01NUkSf3joV3bk6P5z_Ah8A5xhdYkTFVWK45BwigiFCghFYHYAFrpiETEh6-KtFeQxOUtoiVFJJyAK81GE3dC67wjY6aptdbD91bkNfBF-k0cA6jF3YGWh0jK2LRR773nVd22-K9zY3xdDo5GDwcC8KnXOwXbCvp-DI6y65s5-7BM-3N0_1PVw93j3U1ytoKacZCiqYZ0xas2YCO6mtXBPiS4GElsZQbyyXzE4vq7k1DpUcI2u0lt4zWVq6BBdz7xDD2-hSVtswxn6aVKSsKoIZZ3RykdllY0gpOq-G2O50_FAYqW-EakaoJoRqj1BVU4jOoTSZ-42Lf9X_pL4AjVB2Jw</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Han, Meng</creator><creator>Ge, Peipei</creator><creator>Wang, Jiguo</creator><creator>Guo, Zhenning</creator><creator>Fang, Yiqi</creator><creator>Ma, Xueyan</creator><creator>Yu, Xiaoyang</creator><creator>Deng, Yongkai</creator><creator>Wörner, Hans Jakob</creator><creator>Gong, Qihuang</creator><creator>Liu, Yunquan</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-5307-9638</orcidid><orcidid>https://orcid.org/0000-0003-1137-7236</orcidid></search><sort><creationdate>20211001</creationdate><title>Complete characterization of sub-Coulomb-barrier tunnelling with phase-of-phase attoclock</title><author>Han, Meng ; Ge, Peipei ; Wang, Jiguo ; Guo, Zhenning ; Fang, Yiqi ; Ma, Xueyan ; Yu, Xiaoyang ; Deng, Yongkai ; Wörner, Hans Jakob ; Gong, Qihuang ; Liu, Yunquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-8384f449cbd481e9ac9d22f5808a9bb3fbc694c81eca6cbe05610cbaa9ff495c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>140/125</topic><topic>639/624/400/584</topic><topic>639/766/36/2796</topic><topic>Applied and Technical Physics</topic><topic>Color</topic><topic>Delay time</topic><topic>Dynamics</topic><topic>Electric fields</topic><topic>Electron trajectories</topic><topic>Electron tunneling</topic><topic>Holography</topic><topic>Ionization</topic><topic>Lasers</topic><topic>Light diffraction</topic><topic>Photoelectron spectroscopy</topic><topic>Photoelectrons</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Potential barriers</topic><topic>Quantum Physics</topic><topic>Quantum tunnelling</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Meng</creatorcontrib><creatorcontrib>Ge, Peipei</creatorcontrib><creatorcontrib>Wang, Jiguo</creatorcontrib><creatorcontrib>Guo, Zhenning</creatorcontrib><creatorcontrib>Fang, Yiqi</creatorcontrib><creatorcontrib>Ma, Xueyan</creatorcontrib><creatorcontrib>Yu, Xiaoyang</creatorcontrib><creatorcontrib>Deng, Yongkai</creatorcontrib><creatorcontrib>Wörner, Hans Jakob</creatorcontrib><creatorcontrib>Gong, Qihuang</creatorcontrib><creatorcontrib>Liu, Yunquan</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Meng</au><au>Ge, Peipei</au><au>Wang, Jiguo</au><au>Guo, Zhenning</au><au>Fang, Yiqi</au><au>Ma, Xueyan</au><au>Yu, Xiaoyang</au><au>Deng, Yongkai</au><au>Wörner, Hans Jakob</au><au>Gong, Qihuang</au><au>Liu, Yunquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complete characterization of sub-Coulomb-barrier tunnelling with phase-of-phase attoclock</atitle><jtitle>Nature photonics</jtitle><stitle>Nat. Photon</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>15</volume><issue>10</issue><spage>765</spage><epage>771</epage><pages>765-771</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>Laser-induced electron tunnelling—which triggers a broad range of ultrafast phenomena such as the generation of attosecond light pulses, photoelectron diffraction and holography—has laid the foundation for strong-field physics and attosecond science. Using the attoclock constructed by single-colour elliptically polarized laser fields, previous experiments have measured the tunnelling rates, exit positions, exit velocities and delay times for some specific electron trajectories, which are mostly created at the field peak instant, that is, when the laser electric field and the formed potential barrier are stationary in terms of the derivative versus time. From the view of wave-particle dualism, the electron phase under a classically forbidden, tunnelling barrier has not been measured, which is at the heart of quantum tunnelling physics. Here we present a robust measurement of tunnelling dynamics including the electron sub-barrier phase and amplitude. We combine the attoclock technique with two-colour phase-of-phase (POP) spectroscopy to accurately calibrate the angular streaking relation and to probe the non-stationary tunnelling dynamics by manipulating a rapidly changing potential barrier. This POP attoclock directly links the measured phase of the two-colour relative phase with the ionization instant for the photoelectron with any final momentum on the detector, allowing us to reconstruct the imaginary tunnelling time and the accumulated phase under the barrier. The POP attoclock provides a general time-resolved approach to accessing the underlying quantum dynamics in intense light–matter interactions. Electron non-stationary tunnelling dynamics is probed by the attoclock with the two-colour phase-of-phase photoelectron spectroscopy. Contrary to the case of static tunnelling, angle-to-time mapping in attoclock is found to be not angularly uniform.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41566-021-00842-7</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5307-9638</orcidid><orcidid>https://orcid.org/0000-0003-1137-7236</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1749-4885
ispartof Nature photonics, 2021-10, Vol.15 (10), p.765-771
issn 1749-4885
1749-4893
language eng
recordid cdi_proquest_journals_2577214643
source SpringerLink Journals; Nature
subjects 140/125
639/624/400/584
639/766/36/2796
Applied and Technical Physics
Color
Delay time
Dynamics
Electric fields
Electron trajectories
Electron tunneling
Holography
Ionization
Lasers
Light diffraction
Photoelectron spectroscopy
Photoelectrons
Physics
Physics and Astronomy
Potential barriers
Quantum Physics
Quantum tunnelling
Spectroscopy
Spectrum analysis
title Complete characterization of sub-Coulomb-barrier tunnelling with phase-of-phase attoclock
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A28%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complete%20characterization%20of%20sub-Coulomb-barrier%20tunnelling%20with%20phase-of-phase%20attoclock&rft.jtitle=Nature%20photonics&rft.au=Han,%20Meng&rft.date=2021-10-01&rft.volume=15&rft.issue=10&rft.spage=765&rft.epage=771&rft.pages=765-771&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/s41566-021-00842-7&rft_dat=%3Cproquest_cross%3E2577214643%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2577214643&rft_id=info:pmid/&rfr_iscdi=true