Merger or Not: Accounting for Human Biases in Identifying Galactic Merger Signatures

Significant galaxy mergers throughout cosmic time play a fundamental role in theories of galaxy evolution. The widespread usage of human classifiers to visually assess whether galaxies are in merging systems remains a fundamental component of many morphology studies. Studies that employ human classi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2021-09, Vol.919 (1), p.43
Hauptverfasser: Lambrides, Erini L., Watts, Duncan J., Chiaberge, Marco, Tchernyshyov, Kirill, Kirkpatrick, Allison, Meyer, Eileen T., Heckman, Timothy, Simons, Raymond, Amram, Oz, Hall, Kirsten R., Long, Arianna, Norman, Colin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 43
container_title The Astrophysical journal
container_volume 919
creator Lambrides, Erini L.
Watts, Duncan J.
Chiaberge, Marco
Tchernyshyov, Kirill
Kirkpatrick, Allison
Meyer, Eileen T.
Heckman, Timothy
Simons, Raymond
Amram, Oz
Hall, Kirsten R.
Long, Arianna
Norman, Colin
description Significant galaxy mergers throughout cosmic time play a fundamental role in theories of galaxy evolution. The widespread usage of human classifiers to visually assess whether galaxies are in merging systems remains a fundamental component of many morphology studies. Studies that employ human classifiers usually construct a control sample, and rely on the assumption that the bias introduced by using humans will be evenly applied to all samples. In this work, we test this assumption and develop methods to correct for it. Using the standard binomial statistical methods employed in many morphology studies, we find that the merger fraction, error, and the significance of the difference between two samples are dependent on the intrinsic merger fraction of any given sample. We propose a method of quantifying merger biases of individual human classifiers and incorporate these biases into a full probabilistic model to determine the merger fraction and the probability of an individual galaxy being in a merger. Using 14 simulated human responses and accuracies, we are able to correctly label a galaxy as merger or isolated to within 1% of the truth. Using 14 real human responses on a set of realistic mock galaxy simulation snapshots our model is able to recover the pre-coalesced merger fraction to within 10%. Our method can not only increase the accuracy of studies probing the merger state of galaxies at cosmic noon, but also can be used to construct more accurate training sets in machine-learning studies that use human classified data sets.
doi_str_mv 10.3847/1538-4357/ac0fdf
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_proquest_journals_2577064463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2577064463</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-1b6f5a2bf5678c291878f34d4d01cdbf2c76763b09548401e822e0ea4e7235403</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxS0EEqWwM1qCkVB_22ErFZRKBQaKxGY5jl2lapNgJ0P_exJSwQLT6e793jvpAXCJ0S1VTE4wpyphlMuJscjn_giMfk7HYIQQYomg8uMUnMW46VeSpiOwenZh7QKsAnypmjs4tbZqy6Yo19B3t6d2Z0p4X5joIixKuMhdJ_p9r8_N1timsPAQ8VasS9O0wcVzcOLNNrqLwxyD98eH1ewpWb7OF7PpMrFUpk2CM-G5IZnnQipLUqyk8pTlLEfY5pknVgopaIZSzhRD2ClCHHKGOUkoZ4iOwdWQW4fqs3Wx0ZuqDWX3UhMuJRKMCdpRaKBsqGIMzus6FDsT9hoj3Xen-6J0X5Qeuuss14OlqOrfTFNvdIpTjTtW19_YzR_Yv6lfuSF8Rg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2577064463</pqid></control><display><type>article</type><title>Merger or Not: Accounting for Human Biases in Identifying Galactic Merger Signatures</title><source>IOP Publishing Free Content</source><creator>Lambrides, Erini L. ; Watts, Duncan J. ; Chiaberge, Marco ; Tchernyshyov, Kirill ; Kirkpatrick, Allison ; Meyer, Eileen T. ; Heckman, Timothy ; Simons, Raymond ; Amram, Oz ; Hall, Kirsten R. ; Long, Arianna ; Norman, Colin</creator><creatorcontrib>Lambrides, Erini L. ; Watts, Duncan J. ; Chiaberge, Marco ; Tchernyshyov, Kirill ; Kirkpatrick, Allison ; Meyer, Eileen T. ; Heckman, Timothy ; Simons, Raymond ; Amram, Oz ; Hall, Kirsten R. ; Long, Arianna ; Norman, Colin</creatorcontrib><description>Significant galaxy mergers throughout cosmic time play a fundamental role in theories of galaxy evolution. The widespread usage of human classifiers to visually assess whether galaxies are in merging systems remains a fundamental component of many morphology studies. Studies that employ human classifiers usually construct a control sample, and rely on the assumption that the bias introduced by using humans will be evenly applied to all samples. In this work, we test this assumption and develop methods to correct for it. Using the standard binomial statistical methods employed in many morphology studies, we find that the merger fraction, error, and the significance of the difference between two samples are dependent on the intrinsic merger fraction of any given sample. We propose a method of quantifying merger biases of individual human classifiers and incorporate these biases into a full probabilistic model to determine the merger fraction and the probability of an individual galaxy being in a merger. Using 14 simulated human responses and accuracies, we are able to correctly label a galaxy as merger or isolated to within 1% of the truth. Using 14 real human responses on a set of realistic mock galaxy simulation snapshots our model is able to recover the pre-coalesced merger fraction to within 10%. Our method can not only increase the accuracy of studies probing the merger state of galaxies at cosmic noon, but also can be used to construct more accurate training sets in machine-learning studies that use human classified data sets.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ac0fdf</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astronomical methods ; Astrophysics ; Bayesian statistics ; Classifiers ; Galactic evolution ; Galaxies ; Galaxy mergers ; Galaxy mergers &amp; collisions ; Human bias ; Machine learning ; Morphology ; Probabilistic models ; Stars &amp; galaxies ; Statistical analysis ; Statistical methods</subject><ispartof>The Astrophysical journal, 2021-09, Vol.919 (1), p.43</ispartof><rights>2021. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Sep 01, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-1b6f5a2bf5678c291878f34d4d01cdbf2c76763b09548401e822e0ea4e7235403</citedby><cites>FETCH-LOGICAL-c379t-1b6f5a2bf5678c291878f34d4d01cdbf2c76763b09548401e822e0ea4e7235403</cites><orcidid>0000-0002-7676-9962 ; 0000-0002-6386-7299 ; 0000-0002-5437-6121 ; 0000-0002-7530-8857 ; 0000-0003-1564-3802 ; 0000-0002-3765-3123 ; 0000-0002-4176-845X ; 0000-0003-3216-7190 ; 0000-0002-5222-5717 ; 0000-0001-6670-6370 ; 0000-0002-1306-1545 ; 0000-0003-0789-9939</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ac0fdf/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27923,27924,38889,53866</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ac0fdf$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Lambrides, Erini L.</creatorcontrib><creatorcontrib>Watts, Duncan J.</creatorcontrib><creatorcontrib>Chiaberge, Marco</creatorcontrib><creatorcontrib>Tchernyshyov, Kirill</creatorcontrib><creatorcontrib>Kirkpatrick, Allison</creatorcontrib><creatorcontrib>Meyer, Eileen T.</creatorcontrib><creatorcontrib>Heckman, Timothy</creatorcontrib><creatorcontrib>Simons, Raymond</creatorcontrib><creatorcontrib>Amram, Oz</creatorcontrib><creatorcontrib>Hall, Kirsten R.</creatorcontrib><creatorcontrib>Long, Arianna</creatorcontrib><creatorcontrib>Norman, Colin</creatorcontrib><title>Merger or Not: Accounting for Human Biases in Identifying Galactic Merger Signatures</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>Significant galaxy mergers throughout cosmic time play a fundamental role in theories of galaxy evolution. The widespread usage of human classifiers to visually assess whether galaxies are in merging systems remains a fundamental component of many morphology studies. Studies that employ human classifiers usually construct a control sample, and rely on the assumption that the bias introduced by using humans will be evenly applied to all samples. In this work, we test this assumption and develop methods to correct for it. Using the standard binomial statistical methods employed in many morphology studies, we find that the merger fraction, error, and the significance of the difference between two samples are dependent on the intrinsic merger fraction of any given sample. We propose a method of quantifying merger biases of individual human classifiers and incorporate these biases into a full probabilistic model to determine the merger fraction and the probability of an individual galaxy being in a merger. Using 14 simulated human responses and accuracies, we are able to correctly label a galaxy as merger or isolated to within 1% of the truth. Using 14 real human responses on a set of realistic mock galaxy simulation snapshots our model is able to recover the pre-coalesced merger fraction to within 10%. Our method can not only increase the accuracy of studies probing the merger state of galaxies at cosmic noon, but also can be used to construct more accurate training sets in machine-learning studies that use human classified data sets.</description><subject>Astronomical methods</subject><subject>Astrophysics</subject><subject>Bayesian statistics</subject><subject>Classifiers</subject><subject>Galactic evolution</subject><subject>Galaxies</subject><subject>Galaxy mergers</subject><subject>Galaxy mergers &amp; collisions</subject><subject>Human bias</subject><subject>Machine learning</subject><subject>Morphology</subject><subject>Probabilistic models</subject><subject>Stars &amp; galaxies</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kL1PwzAQxS0EEqWwM1qCkVB_22ErFZRKBQaKxGY5jl2lapNgJ0P_exJSwQLT6e793jvpAXCJ0S1VTE4wpyphlMuJscjn_giMfk7HYIQQYomg8uMUnMW46VeSpiOwenZh7QKsAnypmjs4tbZqy6Yo19B3t6d2Z0p4X5joIixKuMhdJ_p9r8_N1timsPAQ8VasS9O0wcVzcOLNNrqLwxyD98eH1ewpWb7OF7PpMrFUpk2CM-G5IZnnQipLUqyk8pTlLEfY5pknVgopaIZSzhRD2ClCHHKGOUkoZ4iOwdWQW4fqs3Wx0ZuqDWX3UhMuJRKMCdpRaKBsqGIMzus6FDsT9hoj3Xen-6J0X5Qeuuss14OlqOrfTFNvdIpTjTtW19_YzR_Yv6lfuSF8Rg</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Lambrides, Erini L.</creator><creator>Watts, Duncan J.</creator><creator>Chiaberge, Marco</creator><creator>Tchernyshyov, Kirill</creator><creator>Kirkpatrick, Allison</creator><creator>Meyer, Eileen T.</creator><creator>Heckman, Timothy</creator><creator>Simons, Raymond</creator><creator>Amram, Oz</creator><creator>Hall, Kirsten R.</creator><creator>Long, Arianna</creator><creator>Norman, Colin</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7676-9962</orcidid><orcidid>https://orcid.org/0000-0002-6386-7299</orcidid><orcidid>https://orcid.org/0000-0002-5437-6121</orcidid><orcidid>https://orcid.org/0000-0002-7530-8857</orcidid><orcidid>https://orcid.org/0000-0003-1564-3802</orcidid><orcidid>https://orcid.org/0000-0002-3765-3123</orcidid><orcidid>https://orcid.org/0000-0002-4176-845X</orcidid><orcidid>https://orcid.org/0000-0003-3216-7190</orcidid><orcidid>https://orcid.org/0000-0002-5222-5717</orcidid><orcidid>https://orcid.org/0000-0001-6670-6370</orcidid><orcidid>https://orcid.org/0000-0002-1306-1545</orcidid><orcidid>https://orcid.org/0000-0003-0789-9939</orcidid></search><sort><creationdate>20210901</creationdate><title>Merger or Not: Accounting for Human Biases in Identifying Galactic Merger Signatures</title><author>Lambrides, Erini L. ; Watts, Duncan J. ; Chiaberge, Marco ; Tchernyshyov, Kirill ; Kirkpatrick, Allison ; Meyer, Eileen T. ; Heckman, Timothy ; Simons, Raymond ; Amram, Oz ; Hall, Kirsten R. ; Long, Arianna ; Norman, Colin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-1b6f5a2bf5678c291878f34d4d01cdbf2c76763b09548401e822e0ea4e7235403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Astronomical methods</topic><topic>Astrophysics</topic><topic>Bayesian statistics</topic><topic>Classifiers</topic><topic>Galactic evolution</topic><topic>Galaxies</topic><topic>Galaxy mergers</topic><topic>Galaxy mergers &amp; collisions</topic><topic>Human bias</topic><topic>Machine learning</topic><topic>Morphology</topic><topic>Probabilistic models</topic><topic>Stars &amp; galaxies</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lambrides, Erini L.</creatorcontrib><creatorcontrib>Watts, Duncan J.</creatorcontrib><creatorcontrib>Chiaberge, Marco</creatorcontrib><creatorcontrib>Tchernyshyov, Kirill</creatorcontrib><creatorcontrib>Kirkpatrick, Allison</creatorcontrib><creatorcontrib>Meyer, Eileen T.</creatorcontrib><creatorcontrib>Heckman, Timothy</creatorcontrib><creatorcontrib>Simons, Raymond</creatorcontrib><creatorcontrib>Amram, Oz</creatorcontrib><creatorcontrib>Hall, Kirsten R.</creatorcontrib><creatorcontrib>Long, Arianna</creatorcontrib><creatorcontrib>Norman, Colin</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lambrides, Erini L.</au><au>Watts, Duncan J.</au><au>Chiaberge, Marco</au><au>Tchernyshyov, Kirill</au><au>Kirkpatrick, Allison</au><au>Meyer, Eileen T.</au><au>Heckman, Timothy</au><au>Simons, Raymond</au><au>Amram, Oz</au><au>Hall, Kirsten R.</au><au>Long, Arianna</au><au>Norman, Colin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Merger or Not: Accounting for Human Biases in Identifying Galactic Merger Signatures</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2021-09-01</date><risdate>2021</risdate><volume>919</volume><issue>1</issue><spage>43</spage><pages>43-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>Significant galaxy mergers throughout cosmic time play a fundamental role in theories of galaxy evolution. The widespread usage of human classifiers to visually assess whether galaxies are in merging systems remains a fundamental component of many morphology studies. Studies that employ human classifiers usually construct a control sample, and rely on the assumption that the bias introduced by using humans will be evenly applied to all samples. In this work, we test this assumption and develop methods to correct for it. Using the standard binomial statistical methods employed in many morphology studies, we find that the merger fraction, error, and the significance of the difference between two samples are dependent on the intrinsic merger fraction of any given sample. We propose a method of quantifying merger biases of individual human classifiers and incorporate these biases into a full probabilistic model to determine the merger fraction and the probability of an individual galaxy being in a merger. Using 14 simulated human responses and accuracies, we are able to correctly label a galaxy as merger or isolated to within 1% of the truth. Using 14 real human responses on a set of realistic mock galaxy simulation snapshots our model is able to recover the pre-coalesced merger fraction to within 10%. Our method can not only increase the accuracy of studies probing the merger state of galaxies at cosmic noon, but also can be used to construct more accurate training sets in machine-learning studies that use human classified data sets.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ac0fdf</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-7676-9962</orcidid><orcidid>https://orcid.org/0000-0002-6386-7299</orcidid><orcidid>https://orcid.org/0000-0002-5437-6121</orcidid><orcidid>https://orcid.org/0000-0002-7530-8857</orcidid><orcidid>https://orcid.org/0000-0003-1564-3802</orcidid><orcidid>https://orcid.org/0000-0002-3765-3123</orcidid><orcidid>https://orcid.org/0000-0002-4176-845X</orcidid><orcidid>https://orcid.org/0000-0003-3216-7190</orcidid><orcidid>https://orcid.org/0000-0002-5222-5717</orcidid><orcidid>https://orcid.org/0000-0001-6670-6370</orcidid><orcidid>https://orcid.org/0000-0002-1306-1545</orcidid><orcidid>https://orcid.org/0000-0003-0789-9939</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2021-09, Vol.919 (1), p.43
issn 0004-637X
1538-4357
language eng
recordid cdi_proquest_journals_2577064463
source IOP Publishing Free Content
subjects Astronomical methods
Astrophysics
Bayesian statistics
Classifiers
Galactic evolution
Galaxies
Galaxy mergers
Galaxy mergers & collisions
Human bias
Machine learning
Morphology
Probabilistic models
Stars & galaxies
Statistical analysis
Statistical methods
title Merger or Not: Accounting for Human Biases in Identifying Galactic Merger Signatures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T11%3A28%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Merger%20or%20Not:%20Accounting%20for%20Human%20Biases%20in%20Identifying%20Galactic%20Merger%20Signatures&rft.jtitle=The%20Astrophysical%20journal&rft.au=Lambrides,%20Erini%20L.&rft.date=2021-09-01&rft.volume=919&rft.issue=1&rft.spage=43&rft.pages=43-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ac0fdf&rft_dat=%3Cproquest_O3W%3E2577064463%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2577064463&rft_id=info:pmid/&rfr_iscdi=true