Heat transfer analysis in convective flows of fractional second grade fluids with Caputo–Fabrizio and Atangana–Baleanu derivative subject to Newtonion heating
Unsteady free convection flows of an incompressible differential type fluid over an infinite vertical plate with fractional thermal transport are studied. Modern definitions of the fractional derivatives in the sense of Atangana–Baleanu (ABC) and Caputo Fabrizio (CF) are used in the constitutive equ...
Gespeichert in:
Veröffentlicht in: | Mechanics of time-dependent materials 2021-09, Vol.25 (3), p.291-311 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 311 |
---|---|
container_issue | 3 |
container_start_page | 291 |
container_title | Mechanics of time-dependent materials |
container_volume | 25 |
creator | Siddique, Imran Tlili, Iskander Bukhari, Syeda Mahwish Mahsud, Yasir |
description | Unsteady free convection flows of an incompressible differential type fluid over an infinite vertical plate with fractional thermal transport are studied. Modern definitions of the fractional derivatives in the sense of Atangana–Baleanu (ABC) and Caputo Fabrizio (CF) are used in the constitutive equations for the thermal flux. Exact solutions in both cases of the (ABC) and (CF) derivatives for the dimensionless temperature and velocity fields are established by using the Laplace transform technique. Solutions for the ordinary case and some well-known results from the literature are recovered as a limiting case. Expressions for Nusselt number and Skin friction coefficient are also determined. The influence of the pertinent parameters on temperature and velocity fields are discussed graphically. A comparison of ordinary model, and (ABC) and (CF) models are also depicted. It is found that memory of the physical aspects of the problem is well explained by fractional order (ABC) and (CF) models as compared to ordinary one. Further it is noted that the (ABC) model is the best fit to explain the memory effect of the temperature and velocity fields. |
doi_str_mv | 10.1007/s11043-019-09442-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2576936776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2576936776</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-be185fa54a2b4abd7ec136c009fb94934556fba6d45b13d20ccf3693ac0725443</originalsourceid><addsrcrecordid>eNp9kc1uGyEUhUdVI9V18gJZIXU9LQwweJau1fxIVrJJ1ugOAw6WCy4wtuJV3iFv0EfLk-QmrpRdV1xdfeeci05VnTP6nVGqfmTGqOA1ZV1NOyGa-vCpmjCpeN0oPvuMM5_JuqGUfqm-5rzGQXV0Nqn-XlkopCQI2dlEIMDmMftMfCAmhp01xe8scZu4zyQ64hLgJiJFskVgIKsEwxsw-iGTvS8PZAHbscSXp-cL6JM_-IiuA5kXCCu0x_1P2FgIIxls8jt4D8hjv8YsUiK5sfsSA2aQBzzNh9VpdeJgk-3Zv3da3V_8ultc1cvby-vFfFkbzrpS95bNpAMpoOkF9IOyhvHWUNq5vhMdF1K2rod2ELJnfGioMY63HQdDVSOF4NPq29F3m-Kf0eai13FM-NWsG6mQbJVqkWqOlEkx52Sd3ib_G9KjZlS_daGPXWjsQr93oQ8o4kdRRjisbPqw_o_qFTWikwo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2576936776</pqid></control><display><type>article</type><title>Heat transfer analysis in convective flows of fractional second grade fluids with Caputo–Fabrizio and Atangana–Baleanu derivative subject to Newtonion heating</title><source>Springer Nature - Complete Springer Journals</source><creator>Siddique, Imran ; Tlili, Iskander ; Bukhari, Syeda Mahwish ; Mahsud, Yasir</creator><creatorcontrib>Siddique, Imran ; Tlili, Iskander ; Bukhari, Syeda Mahwish ; Mahsud, Yasir</creatorcontrib><description>Unsteady free convection flows of an incompressible differential type fluid over an infinite vertical plate with fractional thermal transport are studied. Modern definitions of the fractional derivatives in the sense of Atangana–Baleanu (ABC) and Caputo Fabrizio (CF) are used in the constitutive equations for the thermal flux. Exact solutions in both cases of the (ABC) and (CF) derivatives for the dimensionless temperature and velocity fields are established by using the Laplace transform technique. Solutions for the ordinary case and some well-known results from the literature are recovered as a limiting case. Expressions for Nusselt number and Skin friction coefficient are also determined. The influence of the pertinent parameters on temperature and velocity fields are discussed graphically. A comparison of ordinary model, and (ABC) and (CF) models are also depicted. It is found that memory of the physical aspects of the problem is well explained by fractional order (ABC) and (CF) models as compared to ordinary one. Further it is noted that the (ABC) model is the best fit to explain the memory effect of the temperature and velocity fields.</description><identifier>ISSN: 1385-2000</identifier><identifier>EISSN: 1573-2738</identifier><identifier>DOI: 10.1007/s11043-019-09442-z</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Characterization and Evaluation of Materials ; Classical Mechanics ; Coefficient of friction ; Constitutive equations ; Constitutive relationships ; Convection heating ; Convective flow ; Engineering ; Exact solutions ; Fluid flow ; Free convection ; Heat transmission ; Incompressible flow ; Laplace transforms ; Polymer Sciences ; Skin friction ; Solid Mechanics ; Velocity distribution</subject><ispartof>Mechanics of time-dependent materials, 2021-09, Vol.25 (3), p.291-311</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Springer Nature B.V. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-be185fa54a2b4abd7ec136c009fb94934556fba6d45b13d20ccf3693ac0725443</citedby><cites>FETCH-LOGICAL-c319t-be185fa54a2b4abd7ec136c009fb94934556fba6d45b13d20ccf3693ac0725443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11043-019-09442-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11043-019-09442-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Siddique, Imran</creatorcontrib><creatorcontrib>Tlili, Iskander</creatorcontrib><creatorcontrib>Bukhari, Syeda Mahwish</creatorcontrib><creatorcontrib>Mahsud, Yasir</creatorcontrib><title>Heat transfer analysis in convective flows of fractional second grade fluids with Caputo–Fabrizio and Atangana–Baleanu derivative subject to Newtonion heating</title><title>Mechanics of time-dependent materials</title><addtitle>Mech Time-Depend Mater</addtitle><description>Unsteady free convection flows of an incompressible differential type fluid over an infinite vertical plate with fractional thermal transport are studied. Modern definitions of the fractional derivatives in the sense of Atangana–Baleanu (ABC) and Caputo Fabrizio (CF) are used in the constitutive equations for the thermal flux. Exact solutions in both cases of the (ABC) and (CF) derivatives for the dimensionless temperature and velocity fields are established by using the Laplace transform technique. Solutions for the ordinary case and some well-known results from the literature are recovered as a limiting case. Expressions for Nusselt number and Skin friction coefficient are also determined. The influence of the pertinent parameters on temperature and velocity fields are discussed graphically. A comparison of ordinary model, and (ABC) and (CF) models are also depicted. It is found that memory of the physical aspects of the problem is well explained by fractional order (ABC) and (CF) models as compared to ordinary one. Further it is noted that the (ABC) model is the best fit to explain the memory effect of the temperature and velocity fields.</description><subject>Characterization and Evaluation of Materials</subject><subject>Classical Mechanics</subject><subject>Coefficient of friction</subject><subject>Constitutive equations</subject><subject>Constitutive relationships</subject><subject>Convection heating</subject><subject>Convective flow</subject><subject>Engineering</subject><subject>Exact solutions</subject><subject>Fluid flow</subject><subject>Free convection</subject><subject>Heat transmission</subject><subject>Incompressible flow</subject><subject>Laplace transforms</subject><subject>Polymer Sciences</subject><subject>Skin friction</subject><subject>Solid Mechanics</subject><subject>Velocity distribution</subject><issn>1385-2000</issn><issn>1573-2738</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kc1uGyEUhUdVI9V18gJZIXU9LQwweJau1fxIVrJJ1ugOAw6WCy4wtuJV3iFv0EfLk-QmrpRdV1xdfeeci05VnTP6nVGqfmTGqOA1ZV1NOyGa-vCpmjCpeN0oPvuMM5_JuqGUfqm-5rzGQXV0Nqn-XlkopCQI2dlEIMDmMftMfCAmhp01xe8scZu4zyQ64hLgJiJFskVgIKsEwxsw-iGTvS8PZAHbscSXp-cL6JM_-IiuA5kXCCu0x_1P2FgIIxls8jt4D8hjv8YsUiK5sfsSA2aQBzzNh9VpdeJgk-3Zv3da3V_8ultc1cvby-vFfFkbzrpS95bNpAMpoOkF9IOyhvHWUNq5vhMdF1K2rod2ELJnfGioMY63HQdDVSOF4NPq29F3m-Kf0eai13FM-NWsG6mQbJVqkWqOlEkx52Sd3ib_G9KjZlS_daGPXWjsQr93oQ8o4kdRRjisbPqw_o_qFTWikwo</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Siddique, Imran</creator><creator>Tlili, Iskander</creator><creator>Bukhari, Syeda Mahwish</creator><creator>Mahsud, Yasir</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210901</creationdate><title>Heat transfer analysis in convective flows of fractional second grade fluids with Caputo–Fabrizio and Atangana–Baleanu derivative subject to Newtonion heating</title><author>Siddique, Imran ; Tlili, Iskander ; Bukhari, Syeda Mahwish ; Mahsud, Yasir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-be185fa54a2b4abd7ec136c009fb94934556fba6d45b13d20ccf3693ac0725443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Classical Mechanics</topic><topic>Coefficient of friction</topic><topic>Constitutive equations</topic><topic>Constitutive relationships</topic><topic>Convection heating</topic><topic>Convective flow</topic><topic>Engineering</topic><topic>Exact solutions</topic><topic>Fluid flow</topic><topic>Free convection</topic><topic>Heat transmission</topic><topic>Incompressible flow</topic><topic>Laplace transforms</topic><topic>Polymer Sciences</topic><topic>Skin friction</topic><topic>Solid Mechanics</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Siddique, Imran</creatorcontrib><creatorcontrib>Tlili, Iskander</creatorcontrib><creatorcontrib>Bukhari, Syeda Mahwish</creatorcontrib><creatorcontrib>Mahsud, Yasir</creatorcontrib><collection>CrossRef</collection><jtitle>Mechanics of time-dependent materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Siddique, Imran</au><au>Tlili, Iskander</au><au>Bukhari, Syeda Mahwish</au><au>Mahsud, Yasir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat transfer analysis in convective flows of fractional second grade fluids with Caputo–Fabrizio and Atangana–Baleanu derivative subject to Newtonion heating</atitle><jtitle>Mechanics of time-dependent materials</jtitle><stitle>Mech Time-Depend Mater</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>25</volume><issue>3</issue><spage>291</spage><epage>311</epage><pages>291-311</pages><issn>1385-2000</issn><eissn>1573-2738</eissn><abstract>Unsteady free convection flows of an incompressible differential type fluid over an infinite vertical plate with fractional thermal transport are studied. Modern definitions of the fractional derivatives in the sense of Atangana–Baleanu (ABC) and Caputo Fabrizio (CF) are used in the constitutive equations for the thermal flux. Exact solutions in both cases of the (ABC) and (CF) derivatives for the dimensionless temperature and velocity fields are established by using the Laplace transform technique. Solutions for the ordinary case and some well-known results from the literature are recovered as a limiting case. Expressions for Nusselt number and Skin friction coefficient are also determined. The influence of the pertinent parameters on temperature and velocity fields are discussed graphically. A comparison of ordinary model, and (ABC) and (CF) models are also depicted. It is found that memory of the physical aspects of the problem is well explained by fractional order (ABC) and (CF) models as compared to ordinary one. Further it is noted that the (ABC) model is the best fit to explain the memory effect of the temperature and velocity fields.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11043-019-09442-z</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1385-2000 |
ispartof | Mechanics of time-dependent materials, 2021-09, Vol.25 (3), p.291-311 |
issn | 1385-2000 1573-2738 |
language | eng |
recordid | cdi_proquest_journals_2576936776 |
source | Springer Nature - Complete Springer Journals |
subjects | Characterization and Evaluation of Materials Classical Mechanics Coefficient of friction Constitutive equations Constitutive relationships Convection heating Convective flow Engineering Exact solutions Fluid flow Free convection Heat transmission Incompressible flow Laplace transforms Polymer Sciences Skin friction Solid Mechanics Velocity distribution |
title | Heat transfer analysis in convective flows of fractional second grade fluids with Caputo–Fabrizio and Atangana–Baleanu derivative subject to Newtonion heating |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T13%3A02%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%20transfer%20analysis%20in%20convective%20flows%20of%20fractional%20second%20grade%20fluids%20with%20Caputo%E2%80%93Fabrizio%20and%20Atangana%E2%80%93Baleanu%20derivative%20subject%20to%20Newtonion%20heating&rft.jtitle=Mechanics%20of%20time-dependent%20materials&rft.au=Siddique,%20Imran&rft.date=2021-09-01&rft.volume=25&rft.issue=3&rft.spage=291&rft.epage=311&rft.pages=291-311&rft.issn=1385-2000&rft.eissn=1573-2738&rft_id=info:doi/10.1007/s11043-019-09442-z&rft_dat=%3Cproquest_cross%3E2576936776%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2576936776&rft_id=info:pmid/&rfr_iscdi=true |