Cobalt phosphide supported by two-dimensional molybdenum carbide (MXene) for the hydrogen evolution reaction, oxygen evolution reaction, and overall water splitting

Developing a low cost, high performance, and durable bifunctional catalyst to boost the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) for water splitting is a critical yet challenging task. Transition metal phosphides have been identified as promising dual functional catalyst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2021-10, Vol.9 (37), p.21259-21269
Hauptverfasser: Liu, Shilong, Lin, Zongshan, Wan, Rendian, Liu, Yonggang, Liu, Zhe, Zhang, Shuidong, Zhang, Xiaofeng, Tang, Zhenghua, Lu, Xiaoxing, Tian, Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21269
container_issue 37
container_start_page 21259
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 9
creator Liu, Shilong
Lin, Zongshan
Wan, Rendian
Liu, Yonggang
Liu, Zhe
Zhang, Shuidong
Zhang, Xiaofeng
Tang, Zhenghua
Lu, Xiaoxing
Tian, Yong
description Developing a low cost, high performance, and durable bifunctional catalyst to boost the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) for water splitting is a critical yet challenging task. Transition metal phosphides have been identified as promising dual functional catalysts recently. Herein, we report a facile strategy to construct a heterostructure catalyst by integrating cobalt phosphide with molybdenum carbide (MXene). The CoP/Mo 2 CT x (T is the surface terminal group) catalyst exhibited good HER activity with an overpotential of 78 mV at a current density of 10 mA cm −2 , close to that of the Pt/C benchmark, and its OER performance is markedly better than that of the RuO 2 benchmark, evidenced by a very small overpotential of 260 mV at 10 mA cm −2 in 1 M KOH. Impressively, when employed for overall water splitting, CoP/Mo 2 CT x also outperformed the Pt/C + RuO 2 combination with a voltage of 1.56 V @ 10 mA cm −2 . Density functional theory (DFT) calculations revealed that CoP/Mo 2 CT x has appropriate water adsorption especially the optimal H* adsorption free energy (Δ G H* ), and the Mo 2 C MXene support can significantly increase the total density of states and downshift the d-band center for the HER, while for the OER, multiple characterization techniques of CoP/Mo 2 CT x post the OER test show that CoP in the catalyst can be transformed into Co-OOH during the electrocatalytic process. This study can provide a pathway for the design and fabrication of MXene-supported noble-metal-free bifunctional catalysts toward practical water splitting and energy conversion. CoP/Mo 2 CT x is prepared as efficient catalyst for HER, OER, and water splitting. DFT calculations revealed that it has optimal H* adsorption free energy and MXene plays a critical role to boost HER, while CoP is transformed into Co-OOH in OER.
doi_str_mv 10.1039/d1ta05648d
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2576908926</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2576908926</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-1c9b5a9b4c6ed0f6eaec809b81fc45457f8b15ca9a60511770b6c88c5b0f24473</originalsourceid><addsrcrecordid>eNp1kU1LxDAQhosoKKsX70LAi4rVpNukyVF2_YIVLwreSj6mtpJtapKq_T_-ULuu6Mm5zAvzzMDwJMk-wWcET8W5IVFiynJuNpKdDFOcFrlgm7-Z8-1kL4QXPBbHmAmxk3zOnJI2oq52oasbAyj0Xed8BIPUgOK7S02zhDY0rpUWLZ0dlIG2XyItvVrxR3dP0MIxqpxHsQZUD8a7Z2gRvDnbx3EPeZB6FU6R-xj-G8nWIPcGXlqL3mUEj0Jnmxib9nk32aqkDbD30yfJ49Xlw-wmXdxf384uFqnOOIkp0UJRKVSuGRhcMZCgORaKk0rnNKdFxRWhWgrJMCWkKLBimnNNFa6yPC-mk-Rwfbfz7rWHEMsX1_vx71BmtGACc5GxkTpZU9q7EDxUZeebpfRDSXC5ElHOycPFt4j5CB-sYR_0L_cnavoF8uaJEw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2576908926</pqid></control><display><type>article</type><title>Cobalt phosphide supported by two-dimensional molybdenum carbide (MXene) for the hydrogen evolution reaction, oxygen evolution reaction, and overall water splitting</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Liu, Shilong ; Lin, Zongshan ; Wan, Rendian ; Liu, Yonggang ; Liu, Zhe ; Zhang, Shuidong ; Zhang, Xiaofeng ; Tang, Zhenghua ; Lu, Xiaoxing ; Tian, Yong</creator><creatorcontrib>Liu, Shilong ; Lin, Zongshan ; Wan, Rendian ; Liu, Yonggang ; Liu, Zhe ; Zhang, Shuidong ; Zhang, Xiaofeng ; Tang, Zhenghua ; Lu, Xiaoxing ; Tian, Yong</creatorcontrib><description>Developing a low cost, high performance, and durable bifunctional catalyst to boost the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) for water splitting is a critical yet challenging task. Transition metal phosphides have been identified as promising dual functional catalysts recently. Herein, we report a facile strategy to construct a heterostructure catalyst by integrating cobalt phosphide with molybdenum carbide (MXene). The CoP/Mo 2 CT x (T is the surface terminal group) catalyst exhibited good HER activity with an overpotential of 78 mV at a current density of 10 mA cm −2 , close to that of the Pt/C benchmark, and its OER performance is markedly better than that of the RuO 2 benchmark, evidenced by a very small overpotential of 260 mV at 10 mA cm −2 in 1 M KOH. Impressively, when employed for overall water splitting, CoP/Mo 2 CT x also outperformed the Pt/C + RuO 2 combination with a voltage of 1.56 V @ 10 mA cm −2 . Density functional theory (DFT) calculations revealed that CoP/Mo 2 CT x has appropriate water adsorption especially the optimal H* adsorption free energy (Δ G H* ), and the Mo 2 C MXene support can significantly increase the total density of states and downshift the d-band center for the HER, while for the OER, multiple characterization techniques of CoP/Mo 2 CT x post the OER test show that CoP in the catalyst can be transformed into Co-OOH during the electrocatalytic process. This study can provide a pathway for the design and fabrication of MXene-supported noble-metal-free bifunctional catalysts toward practical water splitting and energy conversion. CoP/Mo 2 CT x is prepared as efficient catalyst for HER, OER, and water splitting. DFT calculations revealed that it has optimal H* adsorption free energy and MXene plays a critical role to boost HER, while CoP is transformed into Co-OOH in OER.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d1ta05648d</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Adsorbed water ; Adsorption ; Benchmarks ; Catalysts ; Cobalt ; Density functional theory ; Energy conversion ; Evolution ; Fabrication ; Free energy ; Heterostructures ; Hydrogen evolution reactions ; Molybdenum ; Molybdenum carbide ; MXenes ; Noble metals ; Oxygen ; Oxygen evolution reactions ; Phosphides ; Ruthenium oxide ; Splitting ; Transition metals ; Water splitting</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2021-10, Vol.9 (37), p.21259-21269</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-1c9b5a9b4c6ed0f6eaec809b81fc45457f8b15ca9a60511770b6c88c5b0f24473</citedby><cites>FETCH-LOGICAL-c281t-1c9b5a9b4c6ed0f6eaec809b81fc45457f8b15ca9a60511770b6c88c5b0f24473</cites><orcidid>0000-0001-6071-808X ; 0000-0002-3973-2052 ; 0000-0003-0718-3164</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Liu, Shilong</creatorcontrib><creatorcontrib>Lin, Zongshan</creatorcontrib><creatorcontrib>Wan, Rendian</creatorcontrib><creatorcontrib>Liu, Yonggang</creatorcontrib><creatorcontrib>Liu, Zhe</creatorcontrib><creatorcontrib>Zhang, Shuidong</creatorcontrib><creatorcontrib>Zhang, Xiaofeng</creatorcontrib><creatorcontrib>Tang, Zhenghua</creatorcontrib><creatorcontrib>Lu, Xiaoxing</creatorcontrib><creatorcontrib>Tian, Yong</creatorcontrib><title>Cobalt phosphide supported by two-dimensional molybdenum carbide (MXene) for the hydrogen evolution reaction, oxygen evolution reaction, and overall water splitting</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Developing a low cost, high performance, and durable bifunctional catalyst to boost the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) for water splitting is a critical yet challenging task. Transition metal phosphides have been identified as promising dual functional catalysts recently. Herein, we report a facile strategy to construct a heterostructure catalyst by integrating cobalt phosphide with molybdenum carbide (MXene). The CoP/Mo 2 CT x (T is the surface terminal group) catalyst exhibited good HER activity with an overpotential of 78 mV at a current density of 10 mA cm −2 , close to that of the Pt/C benchmark, and its OER performance is markedly better than that of the RuO 2 benchmark, evidenced by a very small overpotential of 260 mV at 10 mA cm −2 in 1 M KOH. Impressively, when employed for overall water splitting, CoP/Mo 2 CT x also outperformed the Pt/C + RuO 2 combination with a voltage of 1.56 V @ 10 mA cm −2 . Density functional theory (DFT) calculations revealed that CoP/Mo 2 CT x has appropriate water adsorption especially the optimal H* adsorption free energy (Δ G H* ), and the Mo 2 C MXene support can significantly increase the total density of states and downshift the d-band center for the HER, while for the OER, multiple characterization techniques of CoP/Mo 2 CT x post the OER test show that CoP in the catalyst can be transformed into Co-OOH during the electrocatalytic process. This study can provide a pathway for the design and fabrication of MXene-supported noble-metal-free bifunctional catalysts toward practical water splitting and energy conversion. CoP/Mo 2 CT x is prepared as efficient catalyst for HER, OER, and water splitting. DFT calculations revealed that it has optimal H* adsorption free energy and MXene plays a critical role to boost HER, while CoP is transformed into Co-OOH in OER.</description><subject>Adsorbed water</subject><subject>Adsorption</subject><subject>Benchmarks</subject><subject>Catalysts</subject><subject>Cobalt</subject><subject>Density functional theory</subject><subject>Energy conversion</subject><subject>Evolution</subject><subject>Fabrication</subject><subject>Free energy</subject><subject>Heterostructures</subject><subject>Hydrogen evolution reactions</subject><subject>Molybdenum</subject><subject>Molybdenum carbide</subject><subject>MXenes</subject><subject>Noble metals</subject><subject>Oxygen</subject><subject>Oxygen evolution reactions</subject><subject>Phosphides</subject><subject>Ruthenium oxide</subject><subject>Splitting</subject><subject>Transition metals</subject><subject>Water splitting</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kU1LxDAQhosoKKsX70LAi4rVpNukyVF2_YIVLwreSj6mtpJtapKq_T_-ULuu6Mm5zAvzzMDwJMk-wWcET8W5IVFiynJuNpKdDFOcFrlgm7-Z8-1kL4QXPBbHmAmxk3zOnJI2oq52oasbAyj0Xed8BIPUgOK7S02zhDY0rpUWLZ0dlIG2XyItvVrxR3dP0MIxqpxHsQZUD8a7Z2gRvDnbx3EPeZB6FU6R-xj-G8nWIPcGXlqL3mUEj0Jnmxib9nk32aqkDbD30yfJ49Xlw-wmXdxf384uFqnOOIkp0UJRKVSuGRhcMZCgORaKk0rnNKdFxRWhWgrJMCWkKLBimnNNFa6yPC-mk-Rwfbfz7rWHEMsX1_vx71BmtGACc5GxkTpZU9q7EDxUZeebpfRDSXC5ElHOycPFt4j5CB-sYR_0L_cnavoF8uaJEw</recordid><startdate>20211007</startdate><enddate>20211007</enddate><creator>Liu, Shilong</creator><creator>Lin, Zongshan</creator><creator>Wan, Rendian</creator><creator>Liu, Yonggang</creator><creator>Liu, Zhe</creator><creator>Zhang, Shuidong</creator><creator>Zhang, Xiaofeng</creator><creator>Tang, Zhenghua</creator><creator>Lu, Xiaoxing</creator><creator>Tian, Yong</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-6071-808X</orcidid><orcidid>https://orcid.org/0000-0002-3973-2052</orcidid><orcidid>https://orcid.org/0000-0003-0718-3164</orcidid></search><sort><creationdate>20211007</creationdate><title>Cobalt phosphide supported by two-dimensional molybdenum carbide (MXene) for the hydrogen evolution reaction, oxygen evolution reaction, and overall water splitting</title><author>Liu, Shilong ; Lin, Zongshan ; Wan, Rendian ; Liu, Yonggang ; Liu, Zhe ; Zhang, Shuidong ; Zhang, Xiaofeng ; Tang, Zhenghua ; Lu, Xiaoxing ; Tian, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-1c9b5a9b4c6ed0f6eaec809b81fc45457f8b15ca9a60511770b6c88c5b0f24473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adsorbed water</topic><topic>Adsorption</topic><topic>Benchmarks</topic><topic>Catalysts</topic><topic>Cobalt</topic><topic>Density functional theory</topic><topic>Energy conversion</topic><topic>Evolution</topic><topic>Fabrication</topic><topic>Free energy</topic><topic>Heterostructures</topic><topic>Hydrogen evolution reactions</topic><topic>Molybdenum</topic><topic>Molybdenum carbide</topic><topic>MXenes</topic><topic>Noble metals</topic><topic>Oxygen</topic><topic>Oxygen evolution reactions</topic><topic>Phosphides</topic><topic>Ruthenium oxide</topic><topic>Splitting</topic><topic>Transition metals</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Shilong</creatorcontrib><creatorcontrib>Lin, Zongshan</creatorcontrib><creatorcontrib>Wan, Rendian</creatorcontrib><creatorcontrib>Liu, Yonggang</creatorcontrib><creatorcontrib>Liu, Zhe</creatorcontrib><creatorcontrib>Zhang, Shuidong</creatorcontrib><creatorcontrib>Zhang, Xiaofeng</creatorcontrib><creatorcontrib>Tang, Zhenghua</creatorcontrib><creatorcontrib>Lu, Xiaoxing</creatorcontrib><creatorcontrib>Tian, Yong</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Shilong</au><au>Lin, Zongshan</au><au>Wan, Rendian</au><au>Liu, Yonggang</au><au>Liu, Zhe</au><au>Zhang, Shuidong</au><au>Zhang, Xiaofeng</au><au>Tang, Zhenghua</au><au>Lu, Xiaoxing</au><au>Tian, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cobalt phosphide supported by two-dimensional molybdenum carbide (MXene) for the hydrogen evolution reaction, oxygen evolution reaction, and overall water splitting</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2021-10-07</date><risdate>2021</risdate><volume>9</volume><issue>37</issue><spage>21259</spage><epage>21269</epage><pages>21259-21269</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Developing a low cost, high performance, and durable bifunctional catalyst to boost the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) for water splitting is a critical yet challenging task. Transition metal phosphides have been identified as promising dual functional catalysts recently. Herein, we report a facile strategy to construct a heterostructure catalyst by integrating cobalt phosphide with molybdenum carbide (MXene). The CoP/Mo 2 CT x (T is the surface terminal group) catalyst exhibited good HER activity with an overpotential of 78 mV at a current density of 10 mA cm −2 , close to that of the Pt/C benchmark, and its OER performance is markedly better than that of the RuO 2 benchmark, evidenced by a very small overpotential of 260 mV at 10 mA cm −2 in 1 M KOH. Impressively, when employed for overall water splitting, CoP/Mo 2 CT x also outperformed the Pt/C + RuO 2 combination with a voltage of 1.56 V @ 10 mA cm −2 . Density functional theory (DFT) calculations revealed that CoP/Mo 2 CT x has appropriate water adsorption especially the optimal H* adsorption free energy (Δ G H* ), and the Mo 2 C MXene support can significantly increase the total density of states and downshift the d-band center for the HER, while for the OER, multiple characterization techniques of CoP/Mo 2 CT x post the OER test show that CoP in the catalyst can be transformed into Co-OOH during the electrocatalytic process. This study can provide a pathway for the design and fabrication of MXene-supported noble-metal-free bifunctional catalysts toward practical water splitting and energy conversion. CoP/Mo 2 CT x is prepared as efficient catalyst for HER, OER, and water splitting. DFT calculations revealed that it has optimal H* adsorption free energy and MXene plays a critical role to boost HER, while CoP is transformed into Co-OOH in OER.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1ta05648d</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6071-808X</orcidid><orcidid>https://orcid.org/0000-0002-3973-2052</orcidid><orcidid>https://orcid.org/0000-0003-0718-3164</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2021-10, Vol.9 (37), p.21259-21269
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2576908926
source Royal Society Of Chemistry Journals 2008-
subjects Adsorbed water
Adsorption
Benchmarks
Catalysts
Cobalt
Density functional theory
Energy conversion
Evolution
Fabrication
Free energy
Heterostructures
Hydrogen evolution reactions
Molybdenum
Molybdenum carbide
MXenes
Noble metals
Oxygen
Oxygen evolution reactions
Phosphides
Ruthenium oxide
Splitting
Transition metals
Water splitting
title Cobalt phosphide supported by two-dimensional molybdenum carbide (MXene) for the hydrogen evolution reaction, oxygen evolution reaction, and overall water splitting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T09%3A15%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cobalt%20phosphide%20supported%20by%20two-dimensional%20molybdenum%20carbide%20(MXene)%20for%20the%20hydrogen%20evolution%20reaction,%20oxygen%20evolution%20reaction,%20and%20overall%20water%20splitting&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Liu,%20Shilong&rft.date=2021-10-07&rft.volume=9&rft.issue=37&rft.spage=21259&rft.epage=21269&rft.pages=21259-21269&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d1ta05648d&rft_dat=%3Cproquest_cross%3E2576908926%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2576908926&rft_id=info:pmid/&rfr_iscdi=true