Nyström-based spectral clustering using airborne LiDAR point cloud data for individual tree segmentation

The spectral clustering method has notable advantages in segmentation. But the high computational complexity and time consuming limit its application in large-scale and dense airborne Light Detection and Ranging (LiDAR) point cloud data. We proposed the Nyström-based spectral clustering (NSC) algori...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of digital earth 2021-10, Vol.14 (10), p.1452-1476
Hauptverfasser: Pang, Yong, Wang, Weiwei, Du, Liming, Zhang, Zhongjun, Liang, Xiaojun, Li, Yongning, Wang, Zuyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1476
container_issue 10
container_start_page 1452
container_title International journal of digital earth
container_volume 14
creator Pang, Yong
Wang, Weiwei
Du, Liming
Zhang, Zhongjun
Liang, Xiaojun
Li, Yongning
Wang, Zuyuan
description The spectral clustering method has notable advantages in segmentation. But the high computational complexity and time consuming limit its application in large-scale and dense airborne Light Detection and Ranging (LiDAR) point cloud data. We proposed the Nyström-based spectral clustering (NSC) algorithm to decrease the computational burden. This novel NSC method showed accurate and rapid in individual tree segmentation using point cloud data. The K-nearest neighbour-based sampling (KNNS) was proposed for the Nyström approximation of voxels to improve the efficiency. The NSC algorithm showed good performance for 32 plots in China and Europe. The overall matching rate and extraction rate of proposed algorithm reached 69% and 103%. For all trees located by Global Navigation Satellite System (GNSS) calibrated tape-measures, the tree height regression of the matching results showed an value of 0.88 and a relative root mean square error (RMSE) of 5.97%. For all trees located by GNSS calibrated total-station measures, the values were 0.89 and 4.49%. The method also showed good performance in a benchmark dataset with an improvement of 7% for the average matching rate. The results demonstrate that the proposed NSC algorithm provides an accurate individual tree segmentation and parameter estimation using airborne LiDAR point cloud data.
doi_str_mv 10.1080/17538947.2021.1943018
format Article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_2576760962</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1daac55263104b99b2af831f741b1f6b</doaj_id><sourcerecordid>2576760962</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-b501d36a4bf6fcab4493c929a04173af7bf368a0ce2fe152227fa93b15ce3c83</originalsourceid><addsrcrecordid>eNp9UduKFDEQbUTBdfUThIDPPeaezpvLelsYFGTfQ-U2ZOhJxiStzI_5A_6YPc66j75UFYdzThV1huE1wRuCJ_yWKMEmzdWGYko2RHOGyfRkuDrj46SFePo4c_V8eNHaHmOJOWdXQ_pyar3-_nUYLbTgUTsG1yvMyM1L66GmvENLO1dI1ZaaA9qm9zff0LGk3FdWWTzy0AHFUlHKPv1Ifln1vYaAWtgdQu7QU8kvh2cR5hZePfTr4f7jh_vbz-P266e725vt6LggfbQCE88kcBtldGA518xpqgFzohhEZSOTE2AXaAxEUEpVBM0sES4wN7Hr4e5i6wvszbGmA9STKZDMX6DUnYHak5uDIR7ACUElI5hbrS2FODESFSeWRGlXrzcXr2Mt35fQutmXpeb1ekOFkkpiLenKEheWq6W1GuLjVoLNOSDzLyBzDsg8BLTq3l10Ka-_O8DPUmdvOpzmUmOF7FIz7P8WfwBC45k3</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2576760962</pqid></control><display><type>article</type><title>Nyström-based spectral clustering using airborne LiDAR point cloud data for individual tree segmentation</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Pang, Yong ; Wang, Weiwei ; Du, Liming ; Zhang, Zhongjun ; Liang, Xiaojun ; Li, Yongning ; Wang, Zuyuan</creator><creatorcontrib>Pang, Yong ; Wang, Weiwei ; Du, Liming ; Zhang, Zhongjun ; Liang, Xiaojun ; Li, Yongning ; Wang, Zuyuan</creatorcontrib><description>The spectral clustering method has notable advantages in segmentation. But the high computational complexity and time consuming limit its application in large-scale and dense airborne Light Detection and Ranging (LiDAR) point cloud data. We proposed the Nyström-based spectral clustering (NSC) algorithm to decrease the computational burden. This novel NSC method showed accurate and rapid in individual tree segmentation using point cloud data. The K-nearest neighbour-based sampling (KNNS) was proposed for the Nyström approximation of voxels to improve the efficiency. The NSC algorithm showed good performance for 32 plots in China and Europe. The overall matching rate and extraction rate of proposed algorithm reached 69% and 103%. For all trees located by Global Navigation Satellite System (GNSS) calibrated tape-measures, the tree height regression of the matching results showed an value of 0.88 and a relative root mean square error (RMSE) of 5.97%. For all trees located by GNSS calibrated total-station measures, the values were 0.89 and 4.49%. The method also showed good performance in a benchmark dataset with an improvement of 7% for the average matching rate. The results demonstrate that the proposed NSC algorithm provides an accurate individual tree segmentation and parameter estimation using airborne LiDAR point cloud data.</description><identifier>ISSN: 1753-8947</identifier><identifier>EISSN: 1753-8955</identifier><identifier>DOI: 10.1080/17538947.2021.1943018</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>airborne LiDAR ; Algorithms ; Approximation ; Clustering ; Computer applications ; Data ; Global navigation satellite system ; Image segmentation ; Lidar ; Matching ; Navigation ; Navigational satellites ; Nyström approximation ; Parameter estimation ; Root-mean-square errors ; sampling method ; Spectra ; spectral clustering ; Tree segmentation ; Trees</subject><ispartof>International journal of digital earth, 2021-10, Vol.14 (10), p.1452-1476</ispartof><rights>2021 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group 2021</rights><rights>2021 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-b501d36a4bf6fcab4493c929a04173af7bf368a0ce2fe152227fa93b15ce3c83</citedby><cites>FETCH-LOGICAL-c451t-b501d36a4bf6fcab4493c929a04173af7bf368a0ce2fe152227fa93b15ce3c83</cites><orcidid>0000-0002-9760-6580</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Pang, Yong</creatorcontrib><creatorcontrib>Wang, Weiwei</creatorcontrib><creatorcontrib>Du, Liming</creatorcontrib><creatorcontrib>Zhang, Zhongjun</creatorcontrib><creatorcontrib>Liang, Xiaojun</creatorcontrib><creatorcontrib>Li, Yongning</creatorcontrib><creatorcontrib>Wang, Zuyuan</creatorcontrib><title>Nyström-based spectral clustering using airborne LiDAR point cloud data for individual tree segmentation</title><title>International journal of digital earth</title><description>The spectral clustering method has notable advantages in segmentation. But the high computational complexity and time consuming limit its application in large-scale and dense airborne Light Detection and Ranging (LiDAR) point cloud data. We proposed the Nyström-based spectral clustering (NSC) algorithm to decrease the computational burden. This novel NSC method showed accurate and rapid in individual tree segmentation using point cloud data. The K-nearest neighbour-based sampling (KNNS) was proposed for the Nyström approximation of voxels to improve the efficiency. The NSC algorithm showed good performance for 32 plots in China and Europe. The overall matching rate and extraction rate of proposed algorithm reached 69% and 103%. For all trees located by Global Navigation Satellite System (GNSS) calibrated tape-measures, the tree height regression of the matching results showed an value of 0.88 and a relative root mean square error (RMSE) of 5.97%. For all trees located by GNSS calibrated total-station measures, the values were 0.89 and 4.49%. The method also showed good performance in a benchmark dataset with an improvement of 7% for the average matching rate. The results demonstrate that the proposed NSC algorithm provides an accurate individual tree segmentation and parameter estimation using airborne LiDAR point cloud data.</description><subject>airborne LiDAR</subject><subject>Algorithms</subject><subject>Approximation</subject><subject>Clustering</subject><subject>Computer applications</subject><subject>Data</subject><subject>Global navigation satellite system</subject><subject>Image segmentation</subject><subject>Lidar</subject><subject>Matching</subject><subject>Navigation</subject><subject>Navigational satellites</subject><subject>Nyström approximation</subject><subject>Parameter estimation</subject><subject>Root-mean-square errors</subject><subject>sampling method</subject><subject>Spectra</subject><subject>spectral clustering</subject><subject>Tree segmentation</subject><subject>Trees</subject><issn>1753-8947</issn><issn>1753-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>DOA</sourceid><recordid>eNp9UduKFDEQbUTBdfUThIDPPeaezpvLelsYFGTfQ-U2ZOhJxiStzI_5A_6YPc66j75UFYdzThV1huE1wRuCJ_yWKMEmzdWGYko2RHOGyfRkuDrj46SFePo4c_V8eNHaHmOJOWdXQ_pyar3-_nUYLbTgUTsG1yvMyM1L66GmvENLO1dI1ZaaA9qm9zff0LGk3FdWWTzy0AHFUlHKPv1Ifln1vYaAWtgdQu7QU8kvh2cR5hZePfTr4f7jh_vbz-P266e725vt6LggfbQCE88kcBtldGA518xpqgFzohhEZSOTE2AXaAxEUEpVBM0sES4wN7Hr4e5i6wvszbGmA9STKZDMX6DUnYHak5uDIR7ACUElI5hbrS2FODESFSeWRGlXrzcXr2Mt35fQutmXpeb1ekOFkkpiLenKEheWq6W1GuLjVoLNOSDzLyBzDsg8BLTq3l10Ka-_O8DPUmdvOpzmUmOF7FIz7P8WfwBC45k3</recordid><startdate>20211003</startdate><enddate>20211003</enddate><creator>Pang, Yong</creator><creator>Wang, Weiwei</creator><creator>Du, Liming</creator><creator>Zhang, Zhongjun</creator><creator>Liang, Xiaojun</creator><creator>Li, Yongning</creator><creator>Wang, Zuyuan</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><general>Taylor &amp; Francis Group</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9760-6580</orcidid></search><sort><creationdate>20211003</creationdate><title>Nyström-based spectral clustering using airborne LiDAR point cloud data for individual tree segmentation</title><author>Pang, Yong ; Wang, Weiwei ; Du, Liming ; Zhang, Zhongjun ; Liang, Xiaojun ; Li, Yongning ; Wang, Zuyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-b501d36a4bf6fcab4493c929a04173af7bf368a0ce2fe152227fa93b15ce3c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>airborne LiDAR</topic><topic>Algorithms</topic><topic>Approximation</topic><topic>Clustering</topic><topic>Computer applications</topic><topic>Data</topic><topic>Global navigation satellite system</topic><topic>Image segmentation</topic><topic>Lidar</topic><topic>Matching</topic><topic>Navigation</topic><topic>Navigational satellites</topic><topic>Nyström approximation</topic><topic>Parameter estimation</topic><topic>Root-mean-square errors</topic><topic>sampling method</topic><topic>Spectra</topic><topic>spectral clustering</topic><topic>Tree segmentation</topic><topic>Trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pang, Yong</creatorcontrib><creatorcontrib>Wang, Weiwei</creatorcontrib><creatorcontrib>Du, Liming</creatorcontrib><creatorcontrib>Zhang, Zhongjun</creatorcontrib><creatorcontrib>Liang, Xiaojun</creatorcontrib><creatorcontrib>Li, Yongning</creatorcontrib><creatorcontrib>Wang, Zuyuan</creatorcontrib><collection>Taylor &amp; Francis Open Access</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Directory of Open Access Journals</collection><jtitle>International journal of digital earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pang, Yong</au><au>Wang, Weiwei</au><au>Du, Liming</au><au>Zhang, Zhongjun</au><au>Liang, Xiaojun</au><au>Li, Yongning</au><au>Wang, Zuyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nyström-based spectral clustering using airborne LiDAR point cloud data for individual tree segmentation</atitle><jtitle>International journal of digital earth</jtitle><date>2021-10-03</date><risdate>2021</risdate><volume>14</volume><issue>10</issue><spage>1452</spage><epage>1476</epage><pages>1452-1476</pages><issn>1753-8947</issn><eissn>1753-8955</eissn><abstract>The spectral clustering method has notable advantages in segmentation. But the high computational complexity and time consuming limit its application in large-scale and dense airborne Light Detection and Ranging (LiDAR) point cloud data. We proposed the Nyström-based spectral clustering (NSC) algorithm to decrease the computational burden. This novel NSC method showed accurate and rapid in individual tree segmentation using point cloud data. The K-nearest neighbour-based sampling (KNNS) was proposed for the Nyström approximation of voxels to improve the efficiency. The NSC algorithm showed good performance for 32 plots in China and Europe. The overall matching rate and extraction rate of proposed algorithm reached 69% and 103%. For all trees located by Global Navigation Satellite System (GNSS) calibrated tape-measures, the tree height regression of the matching results showed an value of 0.88 and a relative root mean square error (RMSE) of 5.97%. For all trees located by GNSS calibrated total-station measures, the values were 0.89 and 4.49%. The method also showed good performance in a benchmark dataset with an improvement of 7% for the average matching rate. The results demonstrate that the proposed NSC algorithm provides an accurate individual tree segmentation and parameter estimation using airborne LiDAR point cloud data.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/17538947.2021.1943018</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-9760-6580</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1753-8947
ispartof International journal of digital earth, 2021-10, Vol.14 (10), p.1452-1476
issn 1753-8947
1753-8955
language eng
recordid cdi_proquest_journals_2576760962
source EZB-FREE-00999 freely available EZB journals
subjects airborne LiDAR
Algorithms
Approximation
Clustering
Computer applications
Data
Global navigation satellite system
Image segmentation
Lidar
Matching
Navigation
Navigational satellites
Nyström approximation
Parameter estimation
Root-mean-square errors
sampling method
Spectra
spectral clustering
Tree segmentation
Trees
title Nyström-based spectral clustering using airborne LiDAR point cloud data for individual tree segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A40%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nystr%C3%B6m-based%20spectral%20clustering%20using%20airborne%20LiDAR%20point%20cloud%20data%20for%20individual%20tree%20segmentation&rft.jtitle=International%20journal%20of%20digital%20earth&rft.au=Pang,%20Yong&rft.date=2021-10-03&rft.volume=14&rft.issue=10&rft.spage=1452&rft.epage=1476&rft.pages=1452-1476&rft.issn=1753-8947&rft.eissn=1753-8955&rft_id=info:doi/10.1080/17538947.2021.1943018&rft_dat=%3Cproquest_infor%3E2576760962%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2576760962&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_1daac55263104b99b2af831f741b1f6b&rfr_iscdi=true