SLO beyond the Hardware Isolation Limits
Performance isolation is a keystone for SLO guarantees with shared resources in cloud and datacenter environments. To meet SLO requirements, the state of the art relies on hardware QoS support (e.g., Intel RDT) to allocate shared resources such as last-level caches and memory bandwidth for co-locate...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-09 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Qiu, Haoran Chen, Yongzhou Xu, Tianyin Kalbarczyk, Zbigniew T Iyer, Ravishankar K |
description | Performance isolation is a keystone for SLO guarantees with shared resources in cloud and datacenter environments. To meet SLO requirements, the state of the art relies on hardware QoS support (e.g., Intel RDT) to allocate shared resources such as last-level caches and memory bandwidth for co-located latency-critical applications. As a result, the number of latency-critical applications that can be deployed on a physical machine is bounded by the hardware allocation capability. Unfortunately, such hardware capability is very limited. For example, Intel Xeon E5 v3 processors support at most four partitions for last-level caches, i.e., at most four applications can have dedicated resource allocation. This paper discusses the feasibility and unexplored challenges of providing SLO guarantees beyond the limits of hardware capability. We present CoCo to show the feasibility and the benefits. CoCo schedules applications to time-share interference-free partitions as a transparent software layer. Our evaluation shows that CoCo outperforms non-partitioned and round-robin approaches by up to 9x and 1.2x. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2576741979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2576741979</sourcerecordid><originalsourceid>FETCH-proquest_journals_25767419793</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQCPbxV0hKrczPS1EoyUhV8EgsSilPLEpV8CzOz0ksyczPU_DJzM0sKeZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjU3MzcxNDS3NLY-JUAQBqFS_B</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2576741979</pqid></control><display><type>article</type><title>SLO beyond the Hardware Isolation Limits</title><source>Free E- Journals</source><creator>Qiu, Haoran ; Chen, Yongzhou ; Xu, Tianyin ; Kalbarczyk, Zbigniew T ; Iyer, Ravishankar K</creator><creatorcontrib>Qiu, Haoran ; Chen, Yongzhou ; Xu, Tianyin ; Kalbarczyk, Zbigniew T ; Iyer, Ravishankar K</creatorcontrib><description>Performance isolation is a keystone for SLO guarantees with shared resources in cloud and datacenter environments. To meet SLO requirements, the state of the art relies on hardware QoS support (e.g., Intel RDT) to allocate shared resources such as last-level caches and memory bandwidth for co-located latency-critical applications. As a result, the number of latency-critical applications that can be deployed on a physical machine is bounded by the hardware allocation capability. Unfortunately, such hardware capability is very limited. For example, Intel Xeon E5 v3 processors support at most four partitions for last-level caches, i.e., at most four applications can have dedicated resource allocation. This paper discusses the feasibility and unexplored challenges of providing SLO guarantees beyond the limits of hardware capability. We present CoCo to show the feasibility and the benefits. CoCo schedules applications to time-share interference-free partitions as a transparent software layer. Our evaluation shows that CoCo outperforms non-partitioned and round-robin approaches by up to 9x and 1.2x.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Feasibility ; Hardware ; Resource allocation</subject><ispartof>arXiv.org, 2021-09</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Qiu, Haoran</creatorcontrib><creatorcontrib>Chen, Yongzhou</creatorcontrib><creatorcontrib>Xu, Tianyin</creatorcontrib><creatorcontrib>Kalbarczyk, Zbigniew T</creatorcontrib><creatorcontrib>Iyer, Ravishankar K</creatorcontrib><title>SLO beyond the Hardware Isolation Limits</title><title>arXiv.org</title><description>Performance isolation is a keystone for SLO guarantees with shared resources in cloud and datacenter environments. To meet SLO requirements, the state of the art relies on hardware QoS support (e.g., Intel RDT) to allocate shared resources such as last-level caches and memory bandwidth for co-located latency-critical applications. As a result, the number of latency-critical applications that can be deployed on a physical machine is bounded by the hardware allocation capability. Unfortunately, such hardware capability is very limited. For example, Intel Xeon E5 v3 processors support at most four partitions for last-level caches, i.e., at most four applications can have dedicated resource allocation. This paper discusses the feasibility and unexplored challenges of providing SLO guarantees beyond the limits of hardware capability. We present CoCo to show the feasibility and the benefits. CoCo schedules applications to time-share interference-free partitions as a transparent software layer. Our evaluation shows that CoCo outperforms non-partitioned and round-robin approaches by up to 9x and 1.2x.</description><subject>Feasibility</subject><subject>Hardware</subject><subject>Resource allocation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQCPbxV0hKrczPS1EoyUhV8EgsSilPLEpV8CzOz0ksyczPU_DJzM0sKeZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjU3MzcxNDS3NLY-JUAQBqFS_B</recordid><startdate>20210923</startdate><enddate>20210923</enddate><creator>Qiu, Haoran</creator><creator>Chen, Yongzhou</creator><creator>Xu, Tianyin</creator><creator>Kalbarczyk, Zbigniew T</creator><creator>Iyer, Ravishankar K</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210923</creationdate><title>SLO beyond the Hardware Isolation Limits</title><author>Qiu, Haoran ; Chen, Yongzhou ; Xu, Tianyin ; Kalbarczyk, Zbigniew T ; Iyer, Ravishankar K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25767419793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Feasibility</topic><topic>Hardware</topic><topic>Resource allocation</topic><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Haoran</creatorcontrib><creatorcontrib>Chen, Yongzhou</creatorcontrib><creatorcontrib>Xu, Tianyin</creatorcontrib><creatorcontrib>Kalbarczyk, Zbigniew T</creatorcontrib><creatorcontrib>Iyer, Ravishankar K</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiu, Haoran</au><au>Chen, Yongzhou</au><au>Xu, Tianyin</au><au>Kalbarczyk, Zbigniew T</au><au>Iyer, Ravishankar K</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>SLO beyond the Hardware Isolation Limits</atitle><jtitle>arXiv.org</jtitle><date>2021-09-23</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Performance isolation is a keystone for SLO guarantees with shared resources in cloud and datacenter environments. To meet SLO requirements, the state of the art relies on hardware QoS support (e.g., Intel RDT) to allocate shared resources such as last-level caches and memory bandwidth for co-located latency-critical applications. As a result, the number of latency-critical applications that can be deployed on a physical machine is bounded by the hardware allocation capability. Unfortunately, such hardware capability is very limited. For example, Intel Xeon E5 v3 processors support at most four partitions for last-level caches, i.e., at most four applications can have dedicated resource allocation. This paper discusses the feasibility and unexplored challenges of providing SLO guarantees beyond the limits of hardware capability. We present CoCo to show the feasibility and the benefits. CoCo schedules applications to time-share interference-free partitions as a transparent software layer. Our evaluation shows that CoCo outperforms non-partitioned and round-robin approaches by up to 9x and 1.2x.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2576741979 |
source | Free E- Journals |
subjects | Feasibility Hardware Resource allocation |
title | SLO beyond the Hardware Isolation Limits |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A46%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=SLO%20beyond%20the%20Hardware%20Isolation%20Limits&rft.jtitle=arXiv.org&rft.au=Qiu,%20Haoran&rft.date=2021-09-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2576741979%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2576741979&rft_id=info:pmid/&rfr_iscdi=true |