SLO beyond the Hardware Isolation Limits

Performance isolation is a keystone for SLO guarantees with shared resources in cloud and datacenter environments. To meet SLO requirements, the state of the art relies on hardware QoS support (e.g., Intel RDT) to allocate shared resources such as last-level caches and memory bandwidth for co-locate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-09
Hauptverfasser: Qiu, Haoran, Chen, Yongzhou, Xu, Tianyin, Kalbarczyk, Zbigniew T, Iyer, Ravishankar K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Qiu, Haoran
Chen, Yongzhou
Xu, Tianyin
Kalbarczyk, Zbigniew T
Iyer, Ravishankar K
description Performance isolation is a keystone for SLO guarantees with shared resources in cloud and datacenter environments. To meet SLO requirements, the state of the art relies on hardware QoS support (e.g., Intel RDT) to allocate shared resources such as last-level caches and memory bandwidth for co-located latency-critical applications. As a result, the number of latency-critical applications that can be deployed on a physical machine is bounded by the hardware allocation capability. Unfortunately, such hardware capability is very limited. For example, Intel Xeon E5 v3 processors support at most four partitions for last-level caches, i.e., at most four applications can have dedicated resource allocation. This paper discusses the feasibility and unexplored challenges of providing SLO guarantees beyond the limits of hardware capability. We present CoCo to show the feasibility and the benefits. CoCo schedules applications to time-share interference-free partitions as a transparent software layer. Our evaluation shows that CoCo outperforms non-partitioned and round-robin approaches by up to 9x and 1.2x.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2576741979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2576741979</sourcerecordid><originalsourceid>FETCH-proquest_journals_25767419793</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQCPbxV0hKrczPS1EoyUhV8EgsSilPLEpV8CzOz0ksyczPU_DJzM0sKeZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjU3MzcxNDS3NLY-JUAQBqFS_B</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2576741979</pqid></control><display><type>article</type><title>SLO beyond the Hardware Isolation Limits</title><source>Free E- Journals</source><creator>Qiu, Haoran ; Chen, Yongzhou ; Xu, Tianyin ; Kalbarczyk, Zbigniew T ; Iyer, Ravishankar K</creator><creatorcontrib>Qiu, Haoran ; Chen, Yongzhou ; Xu, Tianyin ; Kalbarczyk, Zbigniew T ; Iyer, Ravishankar K</creatorcontrib><description>Performance isolation is a keystone for SLO guarantees with shared resources in cloud and datacenter environments. To meet SLO requirements, the state of the art relies on hardware QoS support (e.g., Intel RDT) to allocate shared resources such as last-level caches and memory bandwidth for co-located latency-critical applications. As a result, the number of latency-critical applications that can be deployed on a physical machine is bounded by the hardware allocation capability. Unfortunately, such hardware capability is very limited. For example, Intel Xeon E5 v3 processors support at most four partitions for last-level caches, i.e., at most four applications can have dedicated resource allocation. This paper discusses the feasibility and unexplored challenges of providing SLO guarantees beyond the limits of hardware capability. We present CoCo to show the feasibility and the benefits. CoCo schedules applications to time-share interference-free partitions as a transparent software layer. Our evaluation shows that CoCo outperforms non-partitioned and round-robin approaches by up to 9x and 1.2x.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Feasibility ; Hardware ; Resource allocation</subject><ispartof>arXiv.org, 2021-09</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Qiu, Haoran</creatorcontrib><creatorcontrib>Chen, Yongzhou</creatorcontrib><creatorcontrib>Xu, Tianyin</creatorcontrib><creatorcontrib>Kalbarczyk, Zbigniew T</creatorcontrib><creatorcontrib>Iyer, Ravishankar K</creatorcontrib><title>SLO beyond the Hardware Isolation Limits</title><title>arXiv.org</title><description>Performance isolation is a keystone for SLO guarantees with shared resources in cloud and datacenter environments. To meet SLO requirements, the state of the art relies on hardware QoS support (e.g., Intel RDT) to allocate shared resources such as last-level caches and memory bandwidth for co-located latency-critical applications. As a result, the number of latency-critical applications that can be deployed on a physical machine is bounded by the hardware allocation capability. Unfortunately, such hardware capability is very limited. For example, Intel Xeon E5 v3 processors support at most four partitions for last-level caches, i.e., at most four applications can have dedicated resource allocation. This paper discusses the feasibility and unexplored challenges of providing SLO guarantees beyond the limits of hardware capability. We present CoCo to show the feasibility and the benefits. CoCo schedules applications to time-share interference-free partitions as a transparent software layer. Our evaluation shows that CoCo outperforms non-partitioned and round-robin approaches by up to 9x and 1.2x.</description><subject>Feasibility</subject><subject>Hardware</subject><subject>Resource allocation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQCPbxV0hKrczPS1EoyUhV8EgsSilPLEpV8CzOz0ksyczPU_DJzM0sKeZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjU3MzcxNDS3NLY-JUAQBqFS_B</recordid><startdate>20210923</startdate><enddate>20210923</enddate><creator>Qiu, Haoran</creator><creator>Chen, Yongzhou</creator><creator>Xu, Tianyin</creator><creator>Kalbarczyk, Zbigniew T</creator><creator>Iyer, Ravishankar K</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210923</creationdate><title>SLO beyond the Hardware Isolation Limits</title><author>Qiu, Haoran ; Chen, Yongzhou ; Xu, Tianyin ; Kalbarczyk, Zbigniew T ; Iyer, Ravishankar K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25767419793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Feasibility</topic><topic>Hardware</topic><topic>Resource allocation</topic><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Haoran</creatorcontrib><creatorcontrib>Chen, Yongzhou</creatorcontrib><creatorcontrib>Xu, Tianyin</creatorcontrib><creatorcontrib>Kalbarczyk, Zbigniew T</creatorcontrib><creatorcontrib>Iyer, Ravishankar K</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiu, Haoran</au><au>Chen, Yongzhou</au><au>Xu, Tianyin</au><au>Kalbarczyk, Zbigniew T</au><au>Iyer, Ravishankar K</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>SLO beyond the Hardware Isolation Limits</atitle><jtitle>arXiv.org</jtitle><date>2021-09-23</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Performance isolation is a keystone for SLO guarantees with shared resources in cloud and datacenter environments. To meet SLO requirements, the state of the art relies on hardware QoS support (e.g., Intel RDT) to allocate shared resources such as last-level caches and memory bandwidth for co-located latency-critical applications. As a result, the number of latency-critical applications that can be deployed on a physical machine is bounded by the hardware allocation capability. Unfortunately, such hardware capability is very limited. For example, Intel Xeon E5 v3 processors support at most four partitions for last-level caches, i.e., at most four applications can have dedicated resource allocation. This paper discusses the feasibility and unexplored challenges of providing SLO guarantees beyond the limits of hardware capability. We present CoCo to show the feasibility and the benefits. CoCo schedules applications to time-share interference-free partitions as a transparent software layer. Our evaluation shows that CoCo outperforms non-partitioned and round-robin approaches by up to 9x and 1.2x.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2576741979
source Free E- Journals
subjects Feasibility
Hardware
Resource allocation
title SLO beyond the Hardware Isolation Limits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A46%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=SLO%20beyond%20the%20Hardware%20Isolation%20Limits&rft.jtitle=arXiv.org&rft.au=Qiu,%20Haoran&rft.date=2021-09-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2576741979%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2576741979&rft_id=info:pmid/&rfr_iscdi=true