Construction of Music Teaching Evaluation Model Based on Weighted Naïve Bayes

Evaluation of music teaching is a highly subjective task often depending upon experts to assess both the technical and artistic characteristics of performance from the audio signal. This article explores the task of building computational models for evaluating music teaching using machine learning a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific programming 2021, Vol.2021, p.1-9
Hauptverfasser: Xia, Xiongjun, Yan, Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue
container_start_page 1
container_title Scientific programming
container_volume 2021
creator Xia, Xiongjun
Yan, Jin
description Evaluation of music teaching is a highly subjective task often depending upon experts to assess both the technical and artistic characteristics of performance from the audio signal. This article explores the task of building computational models for evaluating music teaching using machine learning algorithms. As one of the widely used methods to build classifiers, the Naïve Bayes algorithm has become one of the most popular music teaching evaluation methods because of its strong prior knowledge, learning features, and high classification performance. In this article, we propose a music teaching evaluation model based on the weighted Naïve Bayes algorithm. Moreover, a weighted Bayesian classification incremental learning approach is employed to improve the efficiency of the music teaching evaluation system. Experimental results show that the algorithm proposed in this paper is superior to other algorithms in the context of music teaching evaluation.
doi_str_mv 10.1155/2021/7196197
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2576544665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2576544665</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-6a95ab70604ef962936973702d5da293a86344ad4d83255ce4fe54f357058ae83</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqWw4wCRWEKo_x0voSo_Uls2RbCzhthpU5UY7KSop-IQXAyXds1q3tP7NKN5CJ0TfE2IEAOKKRkooiXR6gD1SKFErol-PUwaiyLXlPNjdBLjEmNSEIx7aDr0TWxDV7a1bzJfZZMu1mU2c1Au6maejdaw6uAvnHjrVtktRGezZF9cPV-0SU_h53vtUrBx8RQdVbCK7mw_--j5bjQbPuTjp_vH4c04LxlTbS5BC3hTWGLuKi2pZlIrpjC1wkJyUEjGOVhuC0aFKB2vnOAVEyq9Aa5gfXSx2_sR_GfnYmuWvgtNOmmoUFJwLqVI1NWOKoOPMbjKfIT6HcLGEGy2jZltY2bfWMIvd3j63MJX_T_9C3J5aZs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2576544665</pqid></control><display><type>article</type><title>Construction of Music Teaching Evaluation Model Based on Weighted Naïve Bayes</title><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Xia, Xiongjun ; Yan, Jin</creator><contributor>Jan, Mian Ahmad ; Mian Ahmad Jan</contributor><creatorcontrib>Xia, Xiongjun ; Yan, Jin ; Jan, Mian Ahmad ; Mian Ahmad Jan</creatorcontrib><description>Evaluation of music teaching is a highly subjective task often depending upon experts to assess both the technical and artistic characteristics of performance from the audio signal. This article explores the task of building computational models for evaluating music teaching using machine learning algorithms. As one of the widely used methods to build classifiers, the Naïve Bayes algorithm has become one of the most popular music teaching evaluation methods because of its strong prior knowledge, learning features, and high classification performance. In this article, we propose a music teaching evaluation model based on the weighted Naïve Bayes algorithm. Moreover, a weighted Bayesian classification incremental learning approach is employed to improve the efficiency of the music teaching evaluation system. Experimental results show that the algorithm proposed in this paper is superior to other algorithms in the context of music teaching evaluation.</description><identifier>ISSN: 1058-9244</identifier><identifier>EISSN: 1875-919X</identifier><identifier>DOI: 10.1155/2021/7196197</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Accuracy ; Algorithms ; Classification ; Datasets ; Decision making ; Decision trees ; Investigations ; Machine learning ; Music education ; Music teachers ; Neural networks ; Parameter estimation ; Performance evaluation ; Popular music ; Sound ; Support vector machines ; Teaching ; Teaching machines ; Teaching methods</subject><ispartof>Scientific programming, 2021, Vol.2021, p.1-9</ispartof><rights>Copyright © 2021 Xiongjun Xia and Jin Yan.</rights><rights>Copyright © 2021 Xiongjun Xia and Jin Yan. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-6a95ab70604ef962936973702d5da293a86344ad4d83255ce4fe54f357058ae83</citedby><cites>FETCH-LOGICAL-c337t-6a95ab70604ef962936973702d5da293a86344ad4d83255ce4fe54f357058ae83</cites><orcidid>0000-0001-6214-5094</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><contributor>Jan, Mian Ahmad</contributor><contributor>Mian Ahmad Jan</contributor><creatorcontrib>Xia, Xiongjun</creatorcontrib><creatorcontrib>Yan, Jin</creatorcontrib><title>Construction of Music Teaching Evaluation Model Based on Weighted Naïve Bayes</title><title>Scientific programming</title><description>Evaluation of music teaching is a highly subjective task often depending upon experts to assess both the technical and artistic characteristics of performance from the audio signal. This article explores the task of building computational models for evaluating music teaching using machine learning algorithms. As one of the widely used methods to build classifiers, the Naïve Bayes algorithm has become one of the most popular music teaching evaluation methods because of its strong prior knowledge, learning features, and high classification performance. In this article, we propose a music teaching evaluation model based on the weighted Naïve Bayes algorithm. Moreover, a weighted Bayesian classification incremental learning approach is employed to improve the efficiency of the music teaching evaluation system. Experimental results show that the algorithm proposed in this paper is superior to other algorithms in the context of music teaching evaluation.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Classification</subject><subject>Datasets</subject><subject>Decision making</subject><subject>Decision trees</subject><subject>Investigations</subject><subject>Machine learning</subject><subject>Music education</subject><subject>Music teachers</subject><subject>Neural networks</subject><subject>Parameter estimation</subject><subject>Performance evaluation</subject><subject>Popular music</subject><subject>Sound</subject><subject>Support vector machines</subject><subject>Teaching</subject><subject>Teaching machines</subject><subject>Teaching methods</subject><issn>1058-9244</issn><issn>1875-919X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><recordid>eNp9kE1OwzAQhS0EEqWw4wCRWEKo_x0voSo_Uls2RbCzhthpU5UY7KSop-IQXAyXds1q3tP7NKN5CJ0TfE2IEAOKKRkooiXR6gD1SKFErol-PUwaiyLXlPNjdBLjEmNSEIx7aDr0TWxDV7a1bzJfZZMu1mU2c1Au6maejdaw6uAvnHjrVtktRGezZF9cPV-0SU_h53vtUrBx8RQdVbCK7mw_--j5bjQbPuTjp_vH4c04LxlTbS5BC3hTWGLuKi2pZlIrpjC1wkJyUEjGOVhuC0aFKB2vnOAVEyq9Aa5gfXSx2_sR_GfnYmuWvgtNOmmoUFJwLqVI1NWOKoOPMbjKfIT6HcLGEGy2jZltY2bfWMIvd3j63MJX_T_9C3J5aZs</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Xia, Xiongjun</creator><creator>Yan, Jin</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6214-5094</orcidid></search><sort><creationdate>2021</creationdate><title>Construction of Music Teaching Evaluation Model Based on Weighted Naïve Bayes</title><author>Xia, Xiongjun ; Yan, Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-6a95ab70604ef962936973702d5da293a86344ad4d83255ce4fe54f357058ae83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Classification</topic><topic>Datasets</topic><topic>Decision making</topic><topic>Decision trees</topic><topic>Investigations</topic><topic>Machine learning</topic><topic>Music education</topic><topic>Music teachers</topic><topic>Neural networks</topic><topic>Parameter estimation</topic><topic>Performance evaluation</topic><topic>Popular music</topic><topic>Sound</topic><topic>Support vector machines</topic><topic>Teaching</topic><topic>Teaching machines</topic><topic>Teaching methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Xiongjun</creatorcontrib><creatorcontrib>Yan, Jin</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Scientific programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, Xiongjun</au><au>Yan, Jin</au><au>Jan, Mian Ahmad</au><au>Mian Ahmad Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Construction of Music Teaching Evaluation Model Based on Weighted Naïve Bayes</atitle><jtitle>Scientific programming</jtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1058-9244</issn><eissn>1875-919X</eissn><abstract>Evaluation of music teaching is a highly subjective task often depending upon experts to assess both the technical and artistic characteristics of performance from the audio signal. This article explores the task of building computational models for evaluating music teaching using machine learning algorithms. As one of the widely used methods to build classifiers, the Naïve Bayes algorithm has become one of the most popular music teaching evaluation methods because of its strong prior knowledge, learning features, and high classification performance. In this article, we propose a music teaching evaluation model based on the weighted Naïve Bayes algorithm. Moreover, a weighted Bayesian classification incremental learning approach is employed to improve the efficiency of the music teaching evaluation system. Experimental results show that the algorithm proposed in this paper is superior to other algorithms in the context of music teaching evaluation.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2021/7196197</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6214-5094</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1058-9244
ispartof Scientific programming, 2021, Vol.2021, p.1-9
issn 1058-9244
1875-919X
language eng
recordid cdi_proquest_journals_2576544665
source Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Accuracy
Algorithms
Classification
Datasets
Decision making
Decision trees
Investigations
Machine learning
Music education
Music teachers
Neural networks
Parameter estimation
Performance evaluation
Popular music
Sound
Support vector machines
Teaching
Teaching machines
Teaching methods
title Construction of Music Teaching Evaluation Model Based on Weighted Naïve Bayes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A21%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Construction%20of%20Music%20Teaching%20Evaluation%20Model%20Based%20on%20Weighted%20Na%C3%AFve%20Bayes&rft.jtitle=Scientific%20programming&rft.au=Xia,%20Xiongjun&rft.date=2021&rft.volume=2021&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1058-9244&rft.eissn=1875-919X&rft_id=info:doi/10.1155/2021/7196197&rft_dat=%3Cproquest_cross%3E2576544665%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2576544665&rft_id=info:pmid/&rfr_iscdi=true