Construction of Music Teaching Evaluation Model Based on Weighted Naïve Bayes
Evaluation of music teaching is a highly subjective task often depending upon experts to assess both the technical and artistic characteristics of performance from the audio signal. This article explores the task of building computational models for evaluating music teaching using machine learning a...
Gespeichert in:
Veröffentlicht in: | Scientific programming 2021, Vol.2021, p.1-9 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Scientific programming |
container_volume | 2021 |
creator | Xia, Xiongjun Yan, Jin |
description | Evaluation of music teaching is a highly subjective task often depending upon experts to assess both the technical and artistic characteristics of performance from the audio signal. This article explores the task of building computational models for evaluating music teaching using machine learning algorithms. As one of the widely used methods to build classifiers, the Naïve Bayes algorithm has become one of the most popular music teaching evaluation methods because of its strong prior knowledge, learning features, and high classification performance. In this article, we propose a music teaching evaluation model based on the weighted Naïve Bayes algorithm. Moreover, a weighted Bayesian classification incremental learning approach is employed to improve the efficiency of the music teaching evaluation system. Experimental results show that the algorithm proposed in this paper is superior to other algorithms in the context of music teaching evaluation. |
doi_str_mv | 10.1155/2021/7196197 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2576544665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2576544665</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-6a95ab70604ef962936973702d5da293a86344ad4d83255ce4fe54f357058ae83</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqWw4wCRWEKo_x0voSo_Uls2RbCzhthpU5UY7KSop-IQXAyXds1q3tP7NKN5CJ0TfE2IEAOKKRkooiXR6gD1SKFErol-PUwaiyLXlPNjdBLjEmNSEIx7aDr0TWxDV7a1bzJfZZMu1mU2c1Au6maejdaw6uAvnHjrVtktRGezZF9cPV-0SU_h53vtUrBx8RQdVbCK7mw_--j5bjQbPuTjp_vH4c04LxlTbS5BC3hTWGLuKi2pZlIrpjC1wkJyUEjGOVhuC0aFKB2vnOAVEyq9Aa5gfXSx2_sR_GfnYmuWvgtNOmmoUFJwLqVI1NWOKoOPMbjKfIT6HcLGEGy2jZltY2bfWMIvd3j63MJX_T_9C3J5aZs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2576544665</pqid></control><display><type>article</type><title>Construction of Music Teaching Evaluation Model Based on Weighted Naïve Bayes</title><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Xia, Xiongjun ; Yan, Jin</creator><contributor>Jan, Mian Ahmad ; Mian Ahmad Jan</contributor><creatorcontrib>Xia, Xiongjun ; Yan, Jin ; Jan, Mian Ahmad ; Mian Ahmad Jan</creatorcontrib><description>Evaluation of music teaching is a highly subjective task often depending upon experts to assess both the technical and artistic characteristics of performance from the audio signal. This article explores the task of building computational models for evaluating music teaching using machine learning algorithms. As one of the widely used methods to build classifiers, the Naïve Bayes algorithm has become one of the most popular music teaching evaluation methods because of its strong prior knowledge, learning features, and high classification performance. In this article, we propose a music teaching evaluation model based on the weighted Naïve Bayes algorithm. Moreover, a weighted Bayesian classification incremental learning approach is employed to improve the efficiency of the music teaching evaluation system. Experimental results show that the algorithm proposed in this paper is superior to other algorithms in the context of music teaching evaluation.</description><identifier>ISSN: 1058-9244</identifier><identifier>EISSN: 1875-919X</identifier><identifier>DOI: 10.1155/2021/7196197</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Accuracy ; Algorithms ; Classification ; Datasets ; Decision making ; Decision trees ; Investigations ; Machine learning ; Music education ; Music teachers ; Neural networks ; Parameter estimation ; Performance evaluation ; Popular music ; Sound ; Support vector machines ; Teaching ; Teaching machines ; Teaching methods</subject><ispartof>Scientific programming, 2021, Vol.2021, p.1-9</ispartof><rights>Copyright © 2021 Xiongjun Xia and Jin Yan.</rights><rights>Copyright © 2021 Xiongjun Xia and Jin Yan. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-6a95ab70604ef962936973702d5da293a86344ad4d83255ce4fe54f357058ae83</citedby><cites>FETCH-LOGICAL-c337t-6a95ab70604ef962936973702d5da293a86344ad4d83255ce4fe54f357058ae83</cites><orcidid>0000-0001-6214-5094</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><contributor>Jan, Mian Ahmad</contributor><contributor>Mian Ahmad Jan</contributor><creatorcontrib>Xia, Xiongjun</creatorcontrib><creatorcontrib>Yan, Jin</creatorcontrib><title>Construction of Music Teaching Evaluation Model Based on Weighted Naïve Bayes</title><title>Scientific programming</title><description>Evaluation of music teaching is a highly subjective task often depending upon experts to assess both the technical and artistic characteristics of performance from the audio signal. This article explores the task of building computational models for evaluating music teaching using machine learning algorithms. As one of the widely used methods to build classifiers, the Naïve Bayes algorithm has become one of the most popular music teaching evaluation methods because of its strong prior knowledge, learning features, and high classification performance. In this article, we propose a music teaching evaluation model based on the weighted Naïve Bayes algorithm. Moreover, a weighted Bayesian classification incremental learning approach is employed to improve the efficiency of the music teaching evaluation system. Experimental results show that the algorithm proposed in this paper is superior to other algorithms in the context of music teaching evaluation.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Classification</subject><subject>Datasets</subject><subject>Decision making</subject><subject>Decision trees</subject><subject>Investigations</subject><subject>Machine learning</subject><subject>Music education</subject><subject>Music teachers</subject><subject>Neural networks</subject><subject>Parameter estimation</subject><subject>Performance evaluation</subject><subject>Popular music</subject><subject>Sound</subject><subject>Support vector machines</subject><subject>Teaching</subject><subject>Teaching machines</subject><subject>Teaching methods</subject><issn>1058-9244</issn><issn>1875-919X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><recordid>eNp9kE1OwzAQhS0EEqWw4wCRWEKo_x0voSo_Uls2RbCzhthpU5UY7KSop-IQXAyXds1q3tP7NKN5CJ0TfE2IEAOKKRkooiXR6gD1SKFErol-PUwaiyLXlPNjdBLjEmNSEIx7aDr0TWxDV7a1bzJfZZMu1mU2c1Au6maejdaw6uAvnHjrVtktRGezZF9cPV-0SU_h53vtUrBx8RQdVbCK7mw_--j5bjQbPuTjp_vH4c04LxlTbS5BC3hTWGLuKi2pZlIrpjC1wkJyUEjGOVhuC0aFKB2vnOAVEyq9Aa5gfXSx2_sR_GfnYmuWvgtNOmmoUFJwLqVI1NWOKoOPMbjKfIT6HcLGEGy2jZltY2bfWMIvd3j63MJX_T_9C3J5aZs</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Xia, Xiongjun</creator><creator>Yan, Jin</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6214-5094</orcidid></search><sort><creationdate>2021</creationdate><title>Construction of Music Teaching Evaluation Model Based on Weighted Naïve Bayes</title><author>Xia, Xiongjun ; Yan, Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-6a95ab70604ef962936973702d5da293a86344ad4d83255ce4fe54f357058ae83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Classification</topic><topic>Datasets</topic><topic>Decision making</topic><topic>Decision trees</topic><topic>Investigations</topic><topic>Machine learning</topic><topic>Music education</topic><topic>Music teachers</topic><topic>Neural networks</topic><topic>Parameter estimation</topic><topic>Performance evaluation</topic><topic>Popular music</topic><topic>Sound</topic><topic>Support vector machines</topic><topic>Teaching</topic><topic>Teaching machines</topic><topic>Teaching methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Xiongjun</creatorcontrib><creatorcontrib>Yan, Jin</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Scientific programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, Xiongjun</au><au>Yan, Jin</au><au>Jan, Mian Ahmad</au><au>Mian Ahmad Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Construction of Music Teaching Evaluation Model Based on Weighted Naïve Bayes</atitle><jtitle>Scientific programming</jtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1058-9244</issn><eissn>1875-919X</eissn><abstract>Evaluation of music teaching is a highly subjective task often depending upon experts to assess both the technical and artistic characteristics of performance from the audio signal. This article explores the task of building computational models for evaluating music teaching using machine learning algorithms. As one of the widely used methods to build classifiers, the Naïve Bayes algorithm has become one of the most popular music teaching evaluation methods because of its strong prior knowledge, learning features, and high classification performance. In this article, we propose a music teaching evaluation model based on the weighted Naïve Bayes algorithm. Moreover, a weighted Bayesian classification incremental learning approach is employed to improve the efficiency of the music teaching evaluation system. Experimental results show that the algorithm proposed in this paper is superior to other algorithms in the context of music teaching evaluation.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2021/7196197</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6214-5094</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1058-9244 |
ispartof | Scientific programming, 2021, Vol.2021, p.1-9 |
issn | 1058-9244 1875-919X |
language | eng |
recordid | cdi_proquest_journals_2576544665 |
source | Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Accuracy Algorithms Classification Datasets Decision making Decision trees Investigations Machine learning Music education Music teachers Neural networks Parameter estimation Performance evaluation Popular music Sound Support vector machines Teaching Teaching machines Teaching methods |
title | Construction of Music Teaching Evaluation Model Based on Weighted Naïve Bayes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A21%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Construction%20of%20Music%20Teaching%20Evaluation%20Model%20Based%20on%20Weighted%20Na%C3%AFve%20Bayes&rft.jtitle=Scientific%20programming&rft.au=Xia,%20Xiongjun&rft.date=2021&rft.volume=2021&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1058-9244&rft.eissn=1875-919X&rft_id=info:doi/10.1155/2021/7196197&rft_dat=%3Cproquest_cross%3E2576544665%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2576544665&rft_id=info:pmid/&rfr_iscdi=true |