Utility indifference option pricing model with a non-constant risk-aversion under transaction costs and its numerical approximation

Our goal is to analyze the system of Hamilton-Jacobi-Bellman equations arising in derivative securities pricing models. The European style of an option price is constructed as a difference of the certainty equivalents to the value functions solving the system of HJB equations. We introduce the trans...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of risk and financial management 2021-09, Vol.14 (9), p.1-12
Hauptverfasser: Pólvora, Pedro, Ševčovič, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 9
container_start_page 1
container_title Journal of risk and financial management
container_volume 14
creator Pólvora, Pedro
Ševčovič, Daniel
description Our goal is to analyze the system of Hamilton-Jacobi-Bellman equations arising in derivative securities pricing models. The European style of an option price is constructed as a difference of the certainty equivalents to the value functions solving the system of HJB equations. We introduce the transformation method for solving the penalized nonlinear partial differential equation. The transformed equation involves possibly non-constant the risk aversion function containing the negative ratio between the second and first derivatives of the utility function. Using comparison principles we derive useful bounds on the option price. We also propose a finite difference numerical discretization scheme with some computational examples.
doi_str_mv 10.3390/jrfm14090399
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2576449002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2576449002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-615e070f5a3bdab74350bd1f7bcfd2da90a9a0660bb9f6e96c631b36a4532fa93</originalsourceid><addsrcrecordid>eNpVkT1PwzAQhiMEElXpxopkiZXAOU7iekQVX1IlFjpHF8cGl8YutgN05o_jUiTKdDc8977Sc1l2SuGSMQFXS697WoIAJsRBNqKC0nwKvDzc24-zSQhLAKCQbth0lH0tolmZuCHGdkZr5ZWVirh1NM6StTfS2GfSu06tyIeJLwSJdTaXzoaINhJvwmuO78qHLT_YTnkSPdqA8idBuhADQdsRk6YdepUicUVwvfbu0_S4pU6yI42roCa_c5wtbm-eZvf5_PHuYXY9zyXjEPOaVgo46ApZ22HLS1ZB21HNW6m7okMBKBDqGtpW6FqJWtaMtqzGsmKFRsHG2fkuN3W_DSrEZukGb1NlU1S8LksBUCTqYkdJ70LwSjdJQ49-01BotqabfdMJJztcJSkm_MGcF2Ux5XyLnP1D1I8-51PrtEqP-AYfsolL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2576449002</pqid></control><display><type>article</type><title>Utility indifference option pricing model with a non-constant risk-aversion under transaction costs and its numerical approximation</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Pólvora, Pedro ; Ševčovič, Daniel</creator><creatorcontrib>Pólvora, Pedro ; Ševčovič, Daniel</creatorcontrib><description>Our goal is to analyze the system of Hamilton-Jacobi-Bellman equations arising in derivative securities pricing models. The European style of an option price is constructed as a difference of the certainty equivalents to the value functions solving the system of HJB equations. We introduce the transformation method for solving the penalized nonlinear partial differential equation. The transformed equation involves possibly non-constant the risk aversion function containing the negative ratio between the second and first derivatives of the utility function. Using comparison principles we derive useful bounds on the option price. We also propose a finite difference numerical discretization scheme with some computational examples.</description><identifier>ISSN: 1911-8074</identifier><identifier>ISSN: 1911-8066</identifier><identifier>EISSN: 1911-8074</identifier><identifier>DOI: 10.3390/jrfm14090399</identifier><language>eng</language><publisher>Basel: MDPI</publisher><subject>Approximation ; Costs ; Expected utility ; finite difference approximation ; Hamilton-Jacobi-Bellman equation ; Hedging ; Markov analysis ; option pricing ; penalty methods ; Securities prices ; Stochastic models ; Stock prices ; transaction costs ; utility indifference pricing</subject><ispartof>Journal of risk and financial management, 2021-09, Vol.14 (9), p.1-12</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c370t-615e070f5a3bdab74350bd1f7bcfd2da90a9a0660bb9f6e96c631b36a4532fa93</cites><orcidid>0000-0002-1488-7736</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Pólvora, Pedro</creatorcontrib><creatorcontrib>Ševčovič, Daniel</creatorcontrib><title>Utility indifference option pricing model with a non-constant risk-aversion under transaction costs and its numerical approximation</title><title>Journal of risk and financial management</title><description>Our goal is to analyze the system of Hamilton-Jacobi-Bellman equations arising in derivative securities pricing models. The European style of an option price is constructed as a difference of the certainty equivalents to the value functions solving the system of HJB equations. We introduce the transformation method for solving the penalized nonlinear partial differential equation. The transformed equation involves possibly non-constant the risk aversion function containing the negative ratio between the second and first derivatives of the utility function. Using comparison principles we derive useful bounds on the option price. We also propose a finite difference numerical discretization scheme with some computational examples.</description><subject>Approximation</subject><subject>Costs</subject><subject>Expected utility</subject><subject>finite difference approximation</subject><subject>Hamilton-Jacobi-Bellman equation</subject><subject>Hedging</subject><subject>Markov analysis</subject><subject>option pricing</subject><subject>penalty methods</subject><subject>Securities prices</subject><subject>Stochastic models</subject><subject>Stock prices</subject><subject>transaction costs</subject><subject>utility indifference pricing</subject><issn>1911-8074</issn><issn>1911-8066</issn><issn>1911-8074</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpVkT1PwzAQhiMEElXpxopkiZXAOU7iekQVX1IlFjpHF8cGl8YutgN05o_jUiTKdDc8977Sc1l2SuGSMQFXS697WoIAJsRBNqKC0nwKvDzc24-zSQhLAKCQbth0lH0tolmZuCHGdkZr5ZWVirh1NM6StTfS2GfSu06tyIeJLwSJdTaXzoaINhJvwmuO78qHLT_YTnkSPdqA8idBuhADQdsRk6YdepUicUVwvfbu0_S4pU6yI42roCa_c5wtbm-eZvf5_PHuYXY9zyXjEPOaVgo46ApZ22HLS1ZB21HNW6m7okMBKBDqGtpW6FqJWtaMtqzGsmKFRsHG2fkuN3W_DSrEZukGb1NlU1S8LksBUCTqYkdJ70LwSjdJQ49-01BotqabfdMJJztcJSkm_MGcF2Ux5XyLnP1D1I8-51PrtEqP-AYfsolL</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Pólvora, Pedro</creator><creator>Ševčovič, Daniel</creator><general>MDPI</general><general>MDPI AG</general><scope>OT2</scope><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-1488-7736</orcidid></search><sort><creationdate>20210901</creationdate><title>Utility indifference option pricing model with a non-constant risk-aversion under transaction costs and its numerical approximation</title><author>Pólvora, Pedro ; Ševčovič, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-615e070f5a3bdab74350bd1f7bcfd2da90a9a0660bb9f6e96c631b36a4532fa93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Approximation</topic><topic>Costs</topic><topic>Expected utility</topic><topic>finite difference approximation</topic><topic>Hamilton-Jacobi-Bellman equation</topic><topic>Hedging</topic><topic>Markov analysis</topic><topic>option pricing</topic><topic>penalty methods</topic><topic>Securities prices</topic><topic>Stochastic models</topic><topic>Stock prices</topic><topic>transaction costs</topic><topic>utility indifference pricing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pólvora, Pedro</creatorcontrib><creatorcontrib>Ševčovič, Daniel</creatorcontrib><collection>EconStor</collection><collection>ECONIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of risk and financial management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pólvora, Pedro</au><au>Ševčovič, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Utility indifference option pricing model with a non-constant risk-aversion under transaction costs and its numerical approximation</atitle><jtitle>Journal of risk and financial management</jtitle><date>2021-09-01</date><risdate>2021</risdate><volume>14</volume><issue>9</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1911-8074</issn><issn>1911-8066</issn><eissn>1911-8074</eissn><abstract>Our goal is to analyze the system of Hamilton-Jacobi-Bellman equations arising in derivative securities pricing models. The European style of an option price is constructed as a difference of the certainty equivalents to the value functions solving the system of HJB equations. We introduce the transformation method for solving the penalized nonlinear partial differential equation. The transformed equation involves possibly non-constant the risk aversion function containing the negative ratio between the second and first derivatives of the utility function. Using comparison principles we derive useful bounds on the option price. We also propose a finite difference numerical discretization scheme with some computational examples.</abstract><cop>Basel</cop><pub>MDPI</pub><doi>10.3390/jrfm14090399</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1488-7736</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1911-8074
ispartof Journal of risk and financial management, 2021-09, Vol.14 (9), p.1-12
issn 1911-8074
1911-8066
1911-8074
language eng
recordid cdi_proquest_journals_2576449002
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Approximation
Costs
Expected utility
finite difference approximation
Hamilton-Jacobi-Bellman equation
Hedging
Markov analysis
option pricing
penalty methods
Securities prices
Stochastic models
Stock prices
transaction costs
utility indifference pricing
title Utility indifference option pricing model with a non-constant risk-aversion under transaction costs and its numerical approximation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T16%3A19%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Utility%20indifference%20option%20pricing%20model%20with%20a%20non-constant%20risk-aversion%20under%20transaction%20costs%20and%20its%20numerical%20approximation&rft.jtitle=Journal%20of%20risk%20and%20financial%20management&rft.au=P%C3%B3lvora,%20Pedro&rft.date=2021-09-01&rft.volume=14&rft.issue=9&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1911-8074&rft.eissn=1911-8074&rft_id=info:doi/10.3390/jrfm14090399&rft_dat=%3Cproquest_cross%3E2576449002%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2576449002&rft_id=info:pmid/&rfr_iscdi=true