Block-layer model for intergrowth structures
Lattice match and charge transfer between distinct block layers (BLs) play an important role in the formation of an intergrowth structure. Herein we propose a simple BL model addressing the different roles of the lattice match and the charge transfer. Inter-BL charge transfer lowers the internal ene...
Gespeichert in:
Veröffentlicht in: | Nano research 2021-10, Vol.14 (10), p.3629-3635 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3635 |
---|---|
container_issue | 10 |
container_start_page | 3629 |
container_title | Nano research |
container_volume | 14 |
creator | Wang, Zhicheng Wu, Siqi Ji, Liangwen Cao, Guanghan |
description | Lattice match and charge transfer between distinct block layers (BLs) play an important role in the formation of an intergrowth structure. Herein we propose a simple BL model addressing the different roles of the lattice match and the charge transfer. Inter-BL charge transfer lowers the internal energy, while lattice match minimizes the elastic energy, both of which together make the intergrowth structure stabilized. The model is able to reproduce the lattice parameters precisely for complex iron-based superconductors with intergrowth structures. The elastic energy and the charge-transfer energy are evaluated with assistance of the first-principles calculations. This work rationalizes the basic principles of BL design for intergrowth structures, which can be utilized not only for finding new superconducting materials but also for investigating other layered materials with various functionalities. |
doi_str_mv | 10.1007/s12274-021-3716-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2576439005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2576439005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-84cffa57aa0c43eb43c63e09f033181d150cb3b28296c1f4bfc8b05904d723893</originalsourceid><addsrcrecordid>eNp1kLFOwzAQhi0EEqXwAGyRWDHc2U5ij1BRQKrEArOVOHZpSetyToT69qQKiIlb7obv_0_6GLtEuEGA8jahEKXiIJDLEguOR2yCxmgOwxz_3ijUKTtLaQ1QCFR6wq7v2-g-eFvtPWWb2Pg2C5Gy1bbztKT41b1nqaPedT35dM5OQtUmf_Gzp-xt_vA6e-KLl8fn2d2CO4lFx7VyIVR5WVXglPS1kq6QHkwAKVFjgzm4WtZCC1M4DKoOTteQG1BNKaQ2csquxt4dxc_ep86uY0_b4aUVeVkoaQDygcKRchRTIh_sjlabivYWwR6k2FGKHaTYgxSLQ0aMmTSw26Wnv-b_Q99ClGMM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2576439005</pqid></control><display><type>article</type><title>Block-layer model for intergrowth structures</title><source>SpringerLink Journals</source><creator>Wang, Zhicheng ; Wu, Siqi ; Ji, Liangwen ; Cao, Guanghan</creator><creatorcontrib>Wang, Zhicheng ; Wu, Siqi ; Ji, Liangwen ; Cao, Guanghan</creatorcontrib><description>Lattice match and charge transfer between distinct block layers (BLs) play an important role in the formation of an intergrowth structure. Herein we propose a simple BL model addressing the different roles of the lattice match and the charge transfer. Inter-BL charge transfer lowers the internal energy, while lattice match minimizes the elastic energy, both of which together make the intergrowth structure stabilized. The model is able to reproduce the lattice parameters precisely for complex iron-based superconductors with intergrowth structures. The elastic energy and the charge-transfer energy are evaluated with assistance of the first-principles calculations. This work rationalizes the basic principles of BL design for intergrowth structures, which can be utilized not only for finding new superconducting materials but also for investigating other layered materials with various functionalities.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-021-3716-1</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Charge transfer ; Chemistry and Materials Science ; Condensed Matter Physics ; Deformation ; Energy ; Energy charge ; First principles ; Internal energy ; Lattice parameters ; Layered materials ; Materials Science ; Nanotechnology ; Physics ; Principles ; Research Article ; Superconductors</subject><ispartof>Nano research, 2021-10, Vol.14 (10), p.3629-3635</ispartof><rights>Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-84cffa57aa0c43eb43c63e09f033181d150cb3b28296c1f4bfc8b05904d723893</citedby><cites>FETCH-LOGICAL-c316t-84cffa57aa0c43eb43c63e09f033181d150cb3b28296c1f4bfc8b05904d723893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-021-3716-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-021-3716-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Wang, Zhicheng</creatorcontrib><creatorcontrib>Wu, Siqi</creatorcontrib><creatorcontrib>Ji, Liangwen</creatorcontrib><creatorcontrib>Cao, Guanghan</creatorcontrib><title>Block-layer model for intergrowth structures</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>Lattice match and charge transfer between distinct block layers (BLs) play an important role in the formation of an intergrowth structure. Herein we propose a simple BL model addressing the different roles of the lattice match and the charge transfer. Inter-BL charge transfer lowers the internal energy, while lattice match minimizes the elastic energy, both of which together make the intergrowth structure stabilized. The model is able to reproduce the lattice parameters precisely for complex iron-based superconductors with intergrowth structures. The elastic energy and the charge-transfer energy are evaluated with assistance of the first-principles calculations. This work rationalizes the basic principles of BL design for intergrowth structures, which can be utilized not only for finding new superconducting materials but also for investigating other layered materials with various functionalities.</description><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Charge transfer</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Deformation</subject><subject>Energy</subject><subject>Energy charge</subject><subject>First principles</subject><subject>Internal energy</subject><subject>Lattice parameters</subject><subject>Layered materials</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Physics</subject><subject>Principles</subject><subject>Research Article</subject><subject>Superconductors</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kLFOwzAQhi0EEqXwAGyRWDHc2U5ij1BRQKrEArOVOHZpSetyToT69qQKiIlb7obv_0_6GLtEuEGA8jahEKXiIJDLEguOR2yCxmgOwxz_3ijUKTtLaQ1QCFR6wq7v2-g-eFvtPWWb2Pg2C5Gy1bbztKT41b1nqaPedT35dM5OQtUmf_Gzp-xt_vA6e-KLl8fn2d2CO4lFx7VyIVR5WVXglPS1kq6QHkwAKVFjgzm4WtZCC1M4DKoOTteQG1BNKaQ2csquxt4dxc_ep86uY0_b4aUVeVkoaQDygcKRchRTIh_sjlabivYWwR6k2FGKHaTYgxSLQ0aMmTSw26Wnv-b_Q99ClGMM</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Wang, Zhicheng</creator><creator>Wu, Siqi</creator><creator>Ji, Liangwen</creator><creator>Cao, Guanghan</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20211001</creationdate><title>Block-layer model for intergrowth structures</title><author>Wang, Zhicheng ; Wu, Siqi ; Ji, Liangwen ; Cao, Guanghan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-84cffa57aa0c43eb43c63e09f033181d150cb3b28296c1f4bfc8b05904d723893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Charge transfer</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Deformation</topic><topic>Energy</topic><topic>Energy charge</topic><topic>First principles</topic><topic>Internal energy</topic><topic>Lattice parameters</topic><topic>Layered materials</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Physics</topic><topic>Principles</topic><topic>Research Article</topic><topic>Superconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhicheng</creatorcontrib><creatorcontrib>Wu, Siqi</creatorcontrib><creatorcontrib>Ji, Liangwen</creatorcontrib><creatorcontrib>Cao, Guanghan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhicheng</au><au>Wu, Siqi</au><au>Ji, Liangwen</au><au>Cao, Guanghan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Block-layer model for intergrowth structures</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>14</volume><issue>10</issue><spage>3629</spage><epage>3635</epage><pages>3629-3635</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Lattice match and charge transfer between distinct block layers (BLs) play an important role in the formation of an intergrowth structure. Herein we propose a simple BL model addressing the different roles of the lattice match and the charge transfer. Inter-BL charge transfer lowers the internal energy, while lattice match minimizes the elastic energy, both of which together make the intergrowth structure stabilized. The model is able to reproduce the lattice parameters precisely for complex iron-based superconductors with intergrowth structures. The elastic energy and the charge-transfer energy are evaluated with assistance of the first-principles calculations. This work rationalizes the basic principles of BL design for intergrowth structures, which can be utilized not only for finding new superconducting materials but also for investigating other layered materials with various functionalities.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-021-3716-1</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1998-0124 |
ispartof | Nano research, 2021-10, Vol.14 (10), p.3629-3635 |
issn | 1998-0124 1998-0000 |
language | eng |
recordid | cdi_proquest_journals_2576439005 |
source | SpringerLink Journals |
subjects | Atomic/Molecular Structure and Spectra Biomedicine Biotechnology Charge transfer Chemistry and Materials Science Condensed Matter Physics Deformation Energy Energy charge First principles Internal energy Lattice parameters Layered materials Materials Science Nanotechnology Physics Principles Research Article Superconductors |
title | Block-layer model for intergrowth structures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T05%3A58%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Block-layer%20model%20for%20intergrowth%20structures&rft.jtitle=Nano%20research&rft.au=Wang,%20Zhicheng&rft.date=2021-10-01&rft.volume=14&rft.issue=10&rft.spage=3629&rft.epage=3635&rft.pages=3629-3635&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-021-3716-1&rft_dat=%3Cproquest_cross%3E2576439005%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2576439005&rft_id=info:pmid/&rfr_iscdi=true |