A Temperature-Compensation Technique for Improving Resolver Accuracy
Variation in the ambient temperature deteriorates the accuracy of a resolver. In this paper, a temperature-compensation technique is introduced to improve resolver accuracy. The ambient temperature causes deviations in the resolver signal; therefore, the disturbed signal is investigated through the...
Gespeichert in:
Veröffentlicht in: | Sensors (Basel, Switzerland) Switzerland), 2021-09, Vol.21 (18), p.6069, Article 6069 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 18 |
container_start_page | 6069 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 21 |
creator | Petchmaneelumka, Wandee Riewruja, Vanchai Songsuwankit, Kanoknuch Rerkratn, Apinai |
description | Variation in the ambient temperature deteriorates the accuracy of a resolver. In this paper, a temperature-compensation technique is introduced to improve resolver accuracy. The ambient temperature causes deviations in the resolver signal; therefore, the disturbed signal is investigated through the change in current in the primary winding of the resolver. For the proposed technique, the primary winding of the resolver is driven by a class-AB output stage of an operational amplifier (opamp), where the primary winding current forms part of the supply current of the opamp. The opamp supply-current sensing technique is used to extract the primary winding current. The error of the resolver signal due to temperature variations is directly evaluated from the supply current of the opamp. Therefore, the proposed technique does not require a temperature-sensitive device. Using the proposed technique, the error of the resolver signal when the ambient temperature increases to 70 degrees C can be minimized from 1.463% without temperature compensation to 0.017% with temperature compensation. The performance of the proposed technique is discussed in detail and is confirmed by experimental implementation using commercial devices. The results show that the proposed circuit can compensate for wide variations in ambient temperature. |
doi_str_mv | 10.3390/s21186069 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2576402591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_85e73e478c3440ce94cb8fdb1b3194ed</doaj_id><sourcerecordid>2577447777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-79efcacc0df9ec6164f8f831cfb56bd54ec09c71bc01616888a1d027993937b33</originalsourceid><addsrcrecordid>eNqNkV-L1DAUxYso7h998BsUfFGkmjRpk7wIQ3V1YEGQ9TmktzezGdpkTNpZ9tub2VkG1yfzksM9Pw6Xc4viDSUfGVPkU6oplS1p1bPinPKaV7KuyfO_9FlxkdKWkJoxJl8WZ4w3QtSiPS--rMobnHYYzbxErLqQtU9mdsFnA269-71gaUMs19Muhr3zm_InpjDuMZYrgCUauH9VvLBmTPj68b8sfl19vem-V9c_vq271XUFnLdzJRRaMABksAqhpS230kpGwfZN2w8NRyAKBO2B0OxKKQ0dSC2UYoqJnrHLYn3MHYLZ6l10k4n3OhinHwYhbrSJs4MRtWxQMORCAuOcACoOvbRDT3tGFcchZ30-Zu2WfsIB0M_RjE9Cnzre3epN2GvJW8npYZl3jwEx5I7SrCeXAMfReAxL0nWumHORX0bf_oNuwxJ9rupAtZzUjaKZen-kIIaUItrTMpTow5316c6Z_XBk77APNoFDD3jiCSGCUCK5yIockuX_052bH87fhcXP7A_RHLlc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2576402591</pqid></control><display><type>article</type><title>A Temperature-Compensation Technique for Improving Resolver Accuracy</title><source>DOAJ Directory of Open Access Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Petchmaneelumka, Wandee ; Riewruja, Vanchai ; Songsuwankit, Kanoknuch ; Rerkratn, Apinai</creator><creatorcontrib>Petchmaneelumka, Wandee ; Riewruja, Vanchai ; Songsuwankit, Kanoknuch ; Rerkratn, Apinai</creatorcontrib><description>Variation in the ambient temperature deteriorates the accuracy of a resolver. In this paper, a temperature-compensation technique is introduced to improve resolver accuracy. The ambient temperature causes deviations in the resolver signal; therefore, the disturbed signal is investigated through the change in current in the primary winding of the resolver. For the proposed technique, the primary winding of the resolver is driven by a class-AB output stage of an operational amplifier (opamp), where the primary winding current forms part of the supply current of the opamp. The opamp supply-current sensing technique is used to extract the primary winding current. The error of the resolver signal due to temperature variations is directly evaluated from the supply current of the opamp. Therefore, the proposed technique does not require a temperature-sensitive device. Using the proposed technique, the error of the resolver signal when the ambient temperature increases to 70 degrees C can be minimized from 1.463% without temperature compensation to 0.017% with temperature compensation. The performance of the proposed technique is discussed in detail and is confirmed by experimental implementation using commercial devices. The results show that the proposed circuit can compensate for wide variations in ambient temperature.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s21186069</identifier><identifier>PMID: 34577276</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Accuracy ; Ambient temperature ; Chemistry ; Chemistry, Analytical ; Engineering ; Engineering, Electrical & Electronic ; inductive transducer ; Instruments & Instrumentation ; opamp ; Operational amplifiers ; Physical Sciences ; resolver ; Resolvers ; Science & Technology ; subtract-and-sum circuit ; Technology ; Temperature compensation ; Temperature effects ; temperature-compensation technique ; Winding</subject><ispartof>Sensors (Basel, Switzerland), 2021-09, Vol.21 (18), p.6069, Article 6069</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>2</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000701084700001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c446t-79efcacc0df9ec6164f8f831cfb56bd54ec09c71bc01616888a1d027993937b33</citedby><cites>FETCH-LOGICAL-c446t-79efcacc0df9ec6164f8f831cfb56bd54ec09c71bc01616888a1d027993937b33</cites><orcidid>0000-0002-0234-3475 ; 0000-0002-4708-4665</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8468413/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8468413/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27929,27930,39263,53796,53798</link.rule.ids></links><search><creatorcontrib>Petchmaneelumka, Wandee</creatorcontrib><creatorcontrib>Riewruja, Vanchai</creatorcontrib><creatorcontrib>Songsuwankit, Kanoknuch</creatorcontrib><creatorcontrib>Rerkratn, Apinai</creatorcontrib><title>A Temperature-Compensation Technique for Improving Resolver Accuracy</title><title>Sensors (Basel, Switzerland)</title><addtitle>SENSORS-BASEL</addtitle><description>Variation in the ambient temperature deteriorates the accuracy of a resolver. In this paper, a temperature-compensation technique is introduced to improve resolver accuracy. The ambient temperature causes deviations in the resolver signal; therefore, the disturbed signal is investigated through the change in current in the primary winding of the resolver. For the proposed technique, the primary winding of the resolver is driven by a class-AB output stage of an operational amplifier (opamp), where the primary winding current forms part of the supply current of the opamp. The opamp supply-current sensing technique is used to extract the primary winding current. The error of the resolver signal due to temperature variations is directly evaluated from the supply current of the opamp. Therefore, the proposed technique does not require a temperature-sensitive device. Using the proposed technique, the error of the resolver signal when the ambient temperature increases to 70 degrees C can be minimized from 1.463% without temperature compensation to 0.017% with temperature compensation. The performance of the proposed technique is discussed in detail and is confirmed by experimental implementation using commercial devices. The results show that the proposed circuit can compensate for wide variations in ambient temperature.</description><subject>Accuracy</subject><subject>Ambient temperature</subject><subject>Chemistry</subject><subject>Chemistry, Analytical</subject><subject>Engineering</subject><subject>Engineering, Electrical & Electronic</subject><subject>inductive transducer</subject><subject>Instruments & Instrumentation</subject><subject>opamp</subject><subject>Operational amplifiers</subject><subject>Physical Sciences</subject><subject>resolver</subject><subject>Resolvers</subject><subject>Science & Technology</subject><subject>subtract-and-sum circuit</subject><subject>Technology</subject><subject>Temperature compensation</subject><subject>Temperature effects</subject><subject>temperature-compensation technique</subject><subject>Winding</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNqNkV-L1DAUxYso7h998BsUfFGkmjRpk7wIQ3V1YEGQ9TmktzezGdpkTNpZ9tub2VkG1yfzksM9Pw6Xc4viDSUfGVPkU6oplS1p1bPinPKaV7KuyfO_9FlxkdKWkJoxJl8WZ4w3QtSiPS--rMobnHYYzbxErLqQtU9mdsFnA269-71gaUMs19Muhr3zm_InpjDuMZYrgCUauH9VvLBmTPj68b8sfl19vem-V9c_vq271XUFnLdzJRRaMABksAqhpS230kpGwfZN2w8NRyAKBO2B0OxKKQ0dSC2UYoqJnrHLYn3MHYLZ6l10k4n3OhinHwYhbrSJs4MRtWxQMORCAuOcACoOvbRDT3tGFcchZ30-Zu2WfsIB0M_RjE9Cnzre3epN2GvJW8npYZl3jwEx5I7SrCeXAMfReAxL0nWumHORX0bf_oNuwxJ9rupAtZzUjaKZen-kIIaUItrTMpTow5316c6Z_XBk77APNoFDD3jiCSGCUCK5yIockuX_052bH87fhcXP7A_RHLlc</recordid><startdate>20210910</startdate><enddate>20210910</enddate><creator>Petchmaneelumka, Wandee</creator><creator>Riewruja, Vanchai</creator><creator>Songsuwankit, Kanoknuch</creator><creator>Rerkratn, Apinai</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0234-3475</orcidid><orcidid>https://orcid.org/0000-0002-4708-4665</orcidid></search><sort><creationdate>20210910</creationdate><title>A Temperature-Compensation Technique for Improving Resolver Accuracy</title><author>Petchmaneelumka, Wandee ; Riewruja, Vanchai ; Songsuwankit, Kanoknuch ; Rerkratn, Apinai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-79efcacc0df9ec6164f8f831cfb56bd54ec09c71bc01616888a1d027993937b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Ambient temperature</topic><topic>Chemistry</topic><topic>Chemistry, Analytical</topic><topic>Engineering</topic><topic>Engineering, Electrical & Electronic</topic><topic>inductive transducer</topic><topic>Instruments & Instrumentation</topic><topic>opamp</topic><topic>Operational amplifiers</topic><topic>Physical Sciences</topic><topic>resolver</topic><topic>Resolvers</topic><topic>Science & Technology</topic><topic>subtract-and-sum circuit</topic><topic>Technology</topic><topic>Temperature compensation</topic><topic>Temperature effects</topic><topic>temperature-compensation technique</topic><topic>Winding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petchmaneelumka, Wandee</creatorcontrib><creatorcontrib>Riewruja, Vanchai</creatorcontrib><creatorcontrib>Songsuwankit, Kanoknuch</creatorcontrib><creatorcontrib>Rerkratn, Apinai</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petchmaneelumka, Wandee</au><au>Riewruja, Vanchai</au><au>Songsuwankit, Kanoknuch</au><au>Rerkratn, Apinai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Temperature-Compensation Technique for Improving Resolver Accuracy</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><stitle>SENSORS-BASEL</stitle><date>2021-09-10</date><risdate>2021</risdate><volume>21</volume><issue>18</issue><spage>6069</spage><pages>6069-</pages><artnum>6069</artnum><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Variation in the ambient temperature deteriorates the accuracy of a resolver. In this paper, a temperature-compensation technique is introduced to improve resolver accuracy. The ambient temperature causes deviations in the resolver signal; therefore, the disturbed signal is investigated through the change in current in the primary winding of the resolver. For the proposed technique, the primary winding of the resolver is driven by a class-AB output stage of an operational amplifier (opamp), where the primary winding current forms part of the supply current of the opamp. The opamp supply-current sensing technique is used to extract the primary winding current. The error of the resolver signal due to temperature variations is directly evaluated from the supply current of the opamp. Therefore, the proposed technique does not require a temperature-sensitive device. Using the proposed technique, the error of the resolver signal when the ambient temperature increases to 70 degrees C can be minimized from 1.463% without temperature compensation to 0.017% with temperature compensation. The performance of the proposed technique is discussed in detail and is confirmed by experimental implementation using commercial devices. The results show that the proposed circuit can compensate for wide variations in ambient temperature.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>34577276</pmid><doi>10.3390/s21186069</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0234-3475</orcidid><orcidid>https://orcid.org/0000-0002-4708-4665</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2021-09, Vol.21 (18), p.6069, Article 6069 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_proquest_journals_2576402591 |
source | DOAJ Directory of Open Access Journals; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Accuracy Ambient temperature Chemistry Chemistry, Analytical Engineering Engineering, Electrical & Electronic inductive transducer Instruments & Instrumentation opamp Operational amplifiers Physical Sciences resolver Resolvers Science & Technology subtract-and-sum circuit Technology Temperature compensation Temperature effects temperature-compensation technique Winding |
title | A Temperature-Compensation Technique for Improving Resolver Accuracy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T08%3A47%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Temperature-Compensation%20Technique%20for%20Improving%20Resolver%20Accuracy&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Petchmaneelumka,%20Wandee&rft.date=2021-09-10&rft.volume=21&rft.issue=18&rft.spage=6069&rft.pages=6069-&rft.artnum=6069&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s21186069&rft_dat=%3Cproquest_pubme%3E2577447777%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2576402591&rft_id=info:pmid/34577276&rft_doaj_id=oai_doaj_org_article_85e73e478c3440ce94cb8fdb1b3194ed&rfr_iscdi=true |