Deep Learning Based Automated Orthotopic Lung Tumor Segmentation in Whole-Body Mouse CT-Scans

Lung cancer is the leading cause of cancer related deaths worldwide. The development of orthotopic mouse models of lung cancer, which recapitulates the disease more realistically compared to the widely used subcutaneous tumor models, is expected to critically aid the development of novel therapies t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancers 2021-09, Vol.13 (18), p.4585, Article 4585
Hauptverfasser: van de Worp, Wouter R. P. H., van der Heyden, Brent, Lappas, Georgios, van Helvoort, Ardy, Theys, Jan, Schols, Annemie M. W. J., Verhaegen, Frank, Langen, Ramon C. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 18
container_start_page 4585
container_title Cancers
container_volume 13
creator van de Worp, Wouter R. P. H.
van der Heyden, Brent
Lappas, Georgios
van Helvoort, Ardy
Theys, Jan
Schols, Annemie M. W. J.
Verhaegen, Frank
Langen, Ramon C. J.
description Lung cancer is the leading cause of cancer related deaths worldwide. The development of orthotopic mouse models of lung cancer, which recapitulates the disease more realistically compared to the widely used subcutaneous tumor models, is expected to critically aid the development of novel therapies to battle lung cancer or related comorbidities such as cachexia. However, follow-up of tumor take, tumor growth and detection of therapeutic effects is difficult, time consuming and requires a vast number of animals in orthotopic models. Here, we describe a solution for the fully automatic segmentation and quantification of orthotopic lung tumor volume and mass in whole-body mouse computed tomography (CT) scans. The goal is to drastically enhance the efficiency of the research process by replacing time-consuming manual procedures with fast, automated ones. A deep learning algorithm was trained on 60 unique manually delineated lung tumors and evaluated by four-fold cross validation. Quantitative performance metrics demonstrated high accuracy and robustness of the deep learning algorithm for automated tumor volume analyses (mean dice similarity coefficient of 0.80), and superior processing time (69 times faster) compared to manual segmentation. Moreover, manual delineations of the tumor volume by three independent annotators was sensitive to bias in human interpretation while the algorithm was less vulnerable to bias. In addition, we showed that besides longitudinal quantification of tumor development, the deep learning algorithm can also be used in parallel with the previously published method for muscle mass quantification and to optimize the experimental design reducing the number of animals needed in preclinical studies. In conclusion, we implemented a method for fast and highly accurate tumor quantification with minimal operator involvement in data analysis. This deep learning algorithm provides a helpful tool for the noninvasive detection and analysis of tumor take, tumor growth and therapeutic effects in mouse orthotopic lung cancer models.
doi_str_mv 10.3390/cancers13184585
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2576382883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2576382883</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-c1f5e63a12bcc029a1b3a18ac72e35ead4b41335d3fff98c4623502a15cad87a3</originalsourceid><addsrcrecordid>eNqNUU1r3DAQNaWlCWnOvRp6KRQ3kkay5EshcdMP2JBDNvRUhCyPdxVsaSvZDfn31bIhtDlVF414H7zRK4q3lHwEaMiZNd5iTBSo4kKJF8UxI5JVdd3wl3_NR8VpSnckHwAqa_m6OAIuJFMUjoufnxF35QpN9M5vyguTsC_PlzlMZs7TdZy3YQ47Z8vVkvH1MoVY3uBmQj-b2QVfOl_-2IYRq4vQP5RXYUlYtuvqJqdLb4pXgxkTnj7eJ8Xtl8t1-61aXX_93p6vKguNmitLB4E1GMo6awlrDO3yQxkrGYJA0_OOUwDRwzAMjbK8ZiAIM1RY0ytp4KT4dPDdLd2Evc3hohn1LrrJxAcdjNP_It5t9Sb81opLqojIBu8fDWL4tWCa9eSSxXE0HvNGmgkpuSDA9tR3z6h3YYk-r7dn1aCYUpBZZweWjSGliMNTGEr0vj39rL2sUAfFPXZhSNZhxp9Uub26aaDhsC-Stu7w-21Y_JylH_5fCn8AkFWuMw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2576382883</pqid></control><display><type>article</type><title>Deep Learning Based Automated Orthotopic Lung Tumor Segmentation in Whole-Body Mouse CT-Scans</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>PubMed Central</source><creator>van de Worp, Wouter R. P. H. ; van der Heyden, Brent ; Lappas, Georgios ; van Helvoort, Ardy ; Theys, Jan ; Schols, Annemie M. W. J. ; Verhaegen, Frank ; Langen, Ramon C. J.</creator><creatorcontrib>van de Worp, Wouter R. P. H. ; van der Heyden, Brent ; Lappas, Georgios ; van Helvoort, Ardy ; Theys, Jan ; Schols, Annemie M. W. J. ; Verhaegen, Frank ; Langen, Ramon C. J.</creatorcontrib><description>Lung cancer is the leading cause of cancer related deaths worldwide. The development of orthotopic mouse models of lung cancer, which recapitulates the disease more realistically compared to the widely used subcutaneous tumor models, is expected to critically aid the development of novel therapies to battle lung cancer or related comorbidities such as cachexia. However, follow-up of tumor take, tumor growth and detection of therapeutic effects is difficult, time consuming and requires a vast number of animals in orthotopic models. Here, we describe a solution for the fully automatic segmentation and quantification of orthotopic lung tumor volume and mass in whole-body mouse computed tomography (CT) scans. The goal is to drastically enhance the efficiency of the research process by replacing time-consuming manual procedures with fast, automated ones. A deep learning algorithm was trained on 60 unique manually delineated lung tumors and evaluated by four-fold cross validation. Quantitative performance metrics demonstrated high accuracy and robustness of the deep learning algorithm for automated tumor volume analyses (mean dice similarity coefficient of 0.80), and superior processing time (69 times faster) compared to manual segmentation. Moreover, manual delineations of the tumor volume by three independent annotators was sensitive to bias in human interpretation while the algorithm was less vulnerable to bias. In addition, we showed that besides longitudinal quantification of tumor development, the deep learning algorithm can also be used in parallel with the previously published method for muscle mass quantification and to optimize the experimental design reducing the number of animals needed in preclinical studies. In conclusion, we implemented a method for fast and highly accurate tumor quantification with minimal operator involvement in data analysis. This deep learning algorithm provides a helpful tool for the noninvasive detection and analysis of tumor take, tumor growth and therapeutic effects in mouse orthotopic lung cancer models.</description><identifier>ISSN: 2072-6694</identifier><identifier>EISSN: 2072-6694</identifier><identifier>DOI: 10.3390/cancers13184585</identifier><identifier>PMID: 34572813</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Algorithms ; Animal models ; Animal welfare ; Automation ; Cachexia ; Computed tomography ; Deep learning ; Drinking water ; Laboratory animals ; Life Sciences &amp; Biomedicine ; Lung cancer ; Medical research ; Neural networks ; Oncology ; Science &amp; Technology ; Segmentation ; Surgery ; Tumors</subject><ispartof>Cancers, 2021-09, Vol.13 (18), p.4585, Article 4585</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>12</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000699394300001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c398t-c1f5e63a12bcc029a1b3a18ac72e35ead4b41335d3fff98c4623502a15cad87a3</citedby><cites>FETCH-LOGICAL-c398t-c1f5e63a12bcc029a1b3a18ac72e35ead4b41335d3fff98c4623502a15cad87a3</cites><orcidid>0000-0001-8412-6417 ; 0000-0002-3585-0676 ; 0000-0002-9718-8251</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8471805/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8471805/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,887,27933,27934,39267,53800,53802</link.rule.ids></links><search><creatorcontrib>van de Worp, Wouter R. P. H.</creatorcontrib><creatorcontrib>van der Heyden, Brent</creatorcontrib><creatorcontrib>Lappas, Georgios</creatorcontrib><creatorcontrib>van Helvoort, Ardy</creatorcontrib><creatorcontrib>Theys, Jan</creatorcontrib><creatorcontrib>Schols, Annemie M. W. J.</creatorcontrib><creatorcontrib>Verhaegen, Frank</creatorcontrib><creatorcontrib>Langen, Ramon C. J.</creatorcontrib><title>Deep Learning Based Automated Orthotopic Lung Tumor Segmentation in Whole-Body Mouse CT-Scans</title><title>Cancers</title><addtitle>CANCERS</addtitle><description>Lung cancer is the leading cause of cancer related deaths worldwide. The development of orthotopic mouse models of lung cancer, which recapitulates the disease more realistically compared to the widely used subcutaneous tumor models, is expected to critically aid the development of novel therapies to battle lung cancer or related comorbidities such as cachexia. However, follow-up of tumor take, tumor growth and detection of therapeutic effects is difficult, time consuming and requires a vast number of animals in orthotopic models. Here, we describe a solution for the fully automatic segmentation and quantification of orthotopic lung tumor volume and mass in whole-body mouse computed tomography (CT) scans. The goal is to drastically enhance the efficiency of the research process by replacing time-consuming manual procedures with fast, automated ones. A deep learning algorithm was trained on 60 unique manually delineated lung tumors and evaluated by four-fold cross validation. Quantitative performance metrics demonstrated high accuracy and robustness of the deep learning algorithm for automated tumor volume analyses (mean dice similarity coefficient of 0.80), and superior processing time (69 times faster) compared to manual segmentation. Moreover, manual delineations of the tumor volume by three independent annotators was sensitive to bias in human interpretation while the algorithm was less vulnerable to bias. In addition, we showed that besides longitudinal quantification of tumor development, the deep learning algorithm can also be used in parallel with the previously published method for muscle mass quantification and to optimize the experimental design reducing the number of animals needed in preclinical studies. In conclusion, we implemented a method for fast and highly accurate tumor quantification with minimal operator involvement in data analysis. This deep learning algorithm provides a helpful tool for the noninvasive detection and analysis of tumor take, tumor growth and therapeutic effects in mouse orthotopic lung cancer models.</description><subject>Algorithms</subject><subject>Animal models</subject><subject>Animal welfare</subject><subject>Automation</subject><subject>Cachexia</subject><subject>Computed tomography</subject><subject>Deep learning</subject><subject>Drinking water</subject><subject>Laboratory animals</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Lung cancer</subject><subject>Medical research</subject><subject>Neural networks</subject><subject>Oncology</subject><subject>Science &amp; Technology</subject><subject>Segmentation</subject><subject>Surgery</subject><subject>Tumors</subject><issn>2072-6694</issn><issn>2072-6694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNUU1r3DAQNaWlCWnOvRp6KRQ3kkay5EshcdMP2JBDNvRUhCyPdxVsaSvZDfn31bIhtDlVF414H7zRK4q3lHwEaMiZNd5iTBSo4kKJF8UxI5JVdd3wl3_NR8VpSnckHwAqa_m6OAIuJFMUjoufnxF35QpN9M5vyguTsC_PlzlMZs7TdZy3YQ47Z8vVkvH1MoVY3uBmQj-b2QVfOl_-2IYRq4vQP5RXYUlYtuvqJqdLb4pXgxkTnj7eJ8Xtl8t1-61aXX_93p6vKguNmitLB4E1GMo6awlrDO3yQxkrGYJA0_OOUwDRwzAMjbK8ZiAIM1RY0ytp4KT4dPDdLd2Evc3hohn1LrrJxAcdjNP_It5t9Sb81opLqojIBu8fDWL4tWCa9eSSxXE0HvNGmgkpuSDA9tR3z6h3YYk-r7dn1aCYUpBZZweWjSGliMNTGEr0vj39rL2sUAfFPXZhSNZhxp9Uub26aaDhsC-Stu7w-21Y_JylH_5fCn8AkFWuMw</recordid><startdate>20210913</startdate><enddate>20210913</enddate><creator>van de Worp, Wouter R. P. H.</creator><creator>van der Heyden, Brent</creator><creator>Lappas, Georgios</creator><creator>van Helvoort, Ardy</creator><creator>Theys, Jan</creator><creator>Schols, Annemie M. W. J.</creator><creator>Verhaegen, Frank</creator><creator>Langen, Ramon C. J.</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7TO</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8412-6417</orcidid><orcidid>https://orcid.org/0000-0002-3585-0676</orcidid><orcidid>https://orcid.org/0000-0002-9718-8251</orcidid></search><sort><creationdate>20210913</creationdate><title>Deep Learning Based Automated Orthotopic Lung Tumor Segmentation in Whole-Body Mouse CT-Scans</title><author>van de Worp, Wouter R. P. H. ; van der Heyden, Brent ; Lappas, Georgios ; van Helvoort, Ardy ; Theys, Jan ; Schols, Annemie M. W. J. ; Verhaegen, Frank ; Langen, Ramon C. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-c1f5e63a12bcc029a1b3a18ac72e35ead4b41335d3fff98c4623502a15cad87a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Animal models</topic><topic>Animal welfare</topic><topic>Automation</topic><topic>Cachexia</topic><topic>Computed tomography</topic><topic>Deep learning</topic><topic>Drinking water</topic><topic>Laboratory animals</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Lung cancer</topic><topic>Medical research</topic><topic>Neural networks</topic><topic>Oncology</topic><topic>Science &amp; Technology</topic><topic>Segmentation</topic><topic>Surgery</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van de Worp, Wouter R. P. H.</creatorcontrib><creatorcontrib>van der Heyden, Brent</creatorcontrib><creatorcontrib>Lappas, Georgios</creatorcontrib><creatorcontrib>van Helvoort, Ardy</creatorcontrib><creatorcontrib>Theys, Jan</creatorcontrib><creatorcontrib>Schols, Annemie M. W. J.</creatorcontrib><creatorcontrib>Verhaegen, Frank</creatorcontrib><creatorcontrib>Langen, Ramon C. J.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>Proquest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van de Worp, Wouter R. P. H.</au><au>van der Heyden, Brent</au><au>Lappas, Georgios</au><au>van Helvoort, Ardy</au><au>Theys, Jan</au><au>Schols, Annemie M. W. J.</au><au>Verhaegen, Frank</au><au>Langen, Ramon C. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning Based Automated Orthotopic Lung Tumor Segmentation in Whole-Body Mouse CT-Scans</atitle><jtitle>Cancers</jtitle><stitle>CANCERS</stitle><date>2021-09-13</date><risdate>2021</risdate><volume>13</volume><issue>18</issue><spage>4585</spage><pages>4585-</pages><artnum>4585</artnum><issn>2072-6694</issn><eissn>2072-6694</eissn><abstract>Lung cancer is the leading cause of cancer related deaths worldwide. The development of orthotopic mouse models of lung cancer, which recapitulates the disease more realistically compared to the widely used subcutaneous tumor models, is expected to critically aid the development of novel therapies to battle lung cancer or related comorbidities such as cachexia. However, follow-up of tumor take, tumor growth and detection of therapeutic effects is difficult, time consuming and requires a vast number of animals in orthotopic models. Here, we describe a solution for the fully automatic segmentation and quantification of orthotopic lung tumor volume and mass in whole-body mouse computed tomography (CT) scans. The goal is to drastically enhance the efficiency of the research process by replacing time-consuming manual procedures with fast, automated ones. A deep learning algorithm was trained on 60 unique manually delineated lung tumors and evaluated by four-fold cross validation. Quantitative performance metrics demonstrated high accuracy and robustness of the deep learning algorithm for automated tumor volume analyses (mean dice similarity coefficient of 0.80), and superior processing time (69 times faster) compared to manual segmentation. Moreover, manual delineations of the tumor volume by three independent annotators was sensitive to bias in human interpretation while the algorithm was less vulnerable to bias. In addition, we showed that besides longitudinal quantification of tumor development, the deep learning algorithm can also be used in parallel with the previously published method for muscle mass quantification and to optimize the experimental design reducing the number of animals needed in preclinical studies. In conclusion, we implemented a method for fast and highly accurate tumor quantification with minimal operator involvement in data analysis. This deep learning algorithm provides a helpful tool for the noninvasive detection and analysis of tumor take, tumor growth and therapeutic effects in mouse orthotopic lung cancer models.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>34572813</pmid><doi>10.3390/cancers13184585</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8412-6417</orcidid><orcidid>https://orcid.org/0000-0002-3585-0676</orcidid><orcidid>https://orcid.org/0000-0002-9718-8251</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-6694
ispartof Cancers, 2021-09, Vol.13 (18), p.4585, Article 4585
issn 2072-6694
2072-6694
language eng
recordid cdi_proquest_journals_2576382883
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central
subjects Algorithms
Animal models
Animal welfare
Automation
Cachexia
Computed tomography
Deep learning
Drinking water
Laboratory animals
Life Sciences & Biomedicine
Lung cancer
Medical research
Neural networks
Oncology
Science & Technology
Segmentation
Surgery
Tumors
title Deep Learning Based Automated Orthotopic Lung Tumor Segmentation in Whole-Body Mouse CT-Scans
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T06%3A58%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning%20Based%20Automated%20Orthotopic%20Lung%20Tumor%20Segmentation%20in%20Whole-Body%20Mouse%20CT-Scans&rft.jtitle=Cancers&rft.au=van%20de%20Worp,%20Wouter%20R.%20P.%20H.&rft.date=2021-09-13&rft.volume=13&rft.issue=18&rft.spage=4585&rft.pages=4585-&rft.artnum=4585&rft.issn=2072-6694&rft.eissn=2072-6694&rft_id=info:doi/10.3390/cancers13184585&rft_dat=%3Cproquest_cross%3E2576382883%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2576382883&rft_id=info:pmid/34572813&rfr_iscdi=true