Painlevé IV Hamiltonian systems and coherent states

Schrödinger Hamiltonians with third-order differential ladder operators are linked to the Painlevé IV equation. Some of these appear from applying SUSY QM to the harmonic oscillator. Departing from them, we will build coherent states as eigenstates of the annihilation operator, then as displaced ver...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2015-04, Vol.597 (1), p.12017
Hauptverfasser: Bermudez, D, Contreras-Astorga, A, Fernández C, D J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Schrödinger Hamiltonians with third-order differential ladder operators are linked to the Painlevé IV equation. Some of these appear from applying SUSY QM to the harmonic oscillator. Departing from them, we will build coherent states as eigenstates of the annihilation operator, then as displaced versions of the extremal states, both involving the third-order ladder operators, and finally as displaced extremal states using linearized ladder operators. To each Hamiltonian corresponds two families of coherent states for fixed ladder operators: one in the infinite dimension subspace associated with the oscillator spectrum and another in the finite dimension one generated by the eigenstates created by SUSY QM.
ISSN:1742-6588
1742-6596
1742-6596
DOI:10.1088/1742-6596/597/1/012017