Explainable Machine Learning for Fraud Detection
The application of machine learning to support the processing of large data sets holds promise in many industries. We explore explainability methods in the domain of real-time fraud detection by investigating the selection of appropriate background data sets and runtime tradeoffs on supervised and u...
Gespeichert in:
Veröffentlicht in: | Computer (Long Beach, Calif.) Calif.), 2021-10, Vol.54 (10), p.49-59 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The application of machine learning to support the processing of large data sets holds promise in many industries. We explore explainability methods in the domain of real-time fraud detection by investigating the selection of appropriate background data sets and runtime tradeoffs on supervised and unsupervised models. |
---|---|
ISSN: | 0018-9162 1558-0814 |
DOI: | 10.1109/MC.2021.3081249 |