Explainable Machine Learning for Fraud Detection

The application of machine learning to support the processing of large data sets holds promise in many industries. We explore explainability methods in the domain of real-time fraud detection by investigating the selection of appropriate background data sets and runtime tradeoffs on supervised and u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer (Long Beach, Calif.) Calif.), 2021-10, Vol.54 (10), p.49-59
Hauptverfasser: Psychoula, Ismini, Gutmann, Andreas, Mainali, Pradip, Lee, Sharon H., Dunphy, Paul, Petitcolas, Fabien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The application of machine learning to support the processing of large data sets holds promise in many industries. We explore explainability methods in the domain of real-time fraud detection by investigating the selection of appropriate background data sets and runtime tradeoffs on supervised and unsupervised models.
ISSN:0018-9162
1558-0814
DOI:10.1109/MC.2021.3081249