Real-Time Environmental Cognition and Sag Estimation of Transmission Lines Using UAV Equipped With 3-D Lidar System

Transmission lines (TLs) are prone to frequent failures owing to their exposure to extreme environments. It is essential to monitor these failures and repair the TLs on time; moreover, their health must be accurately estimated to ensure reliability and safety. Therefore, this study proposes an intel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power delivery 2021-10, Vol.36 (5), p.2658-2667
Hauptverfasser: Jeong, Siheon, Kim, Donggeun, Kim, San, Ham, Ji-Wan, Lee, Jae-Kyung, Oh, Ki-Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2667
container_issue 5
container_start_page 2658
container_title IEEE transactions on power delivery
container_volume 36
creator Jeong, Siheon
Kim, Donggeun
Kim, San
Ham, Ji-Wan
Lee, Jae-Kyung
Oh, Ki-Yong
description Transmission lines (TLs) are prone to frequent failures owing to their exposure to extreme environments. It is essential to monitor these failures and repair the TLs on time; moreover, their health must be accurately estimated to ensure reliability and safety. Therefore, this study proposes an intelligent monitoring method with novel sensors deployed on a UAV. Specifically, this paper presents a method to not only cognize TLs and their environments in real time but also estimate the sag by combining the measured point-cloud data from a Lidar with the flight information of a UAV. Environmental cognition in real time addresses coordinate transformation and probabilistic downsampling for voxelized mapping, thus ensuring limited hardware requirement. A robust random-sample consensus is introduced to effectively extract point-cloud data for TLs, thereby accurately estimating the sag. Field tests confirmed the accuracy of the proposed method and demonstrated the effectiveness and advantages of the smart environmental cognition system. One flight was sufficient for estimating the sag on both sides of the TLs, demonstrating the economic feasibility of the proposed method. Considering the inherent advantages of the diagnostics and prognostics of a UAV, the proposed method has potential applications in the reliable operation and proactive maintenance of TLs.
doi_str_mv 10.1109/TPWRD.2020.3024965
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2575979759</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9200520</ieee_id><sourcerecordid>2575979759</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-517dabe921b36c90ff4533c5eedd046e5ff2dc7ba0607222ec1cb8cd6e43bb263</originalsourceid><addsrcrecordid>eNo9kMtqwzAQRUVpoWnaH2g3gq6djiXLtpYhcR8QaEmcZmlke5wqxLIjOYX8fZ0H3cwww71zmUPIow8j3wf5kn6t5tMRAwYjDiyQobgiA1_yyAsYxNdkAHEsvFhG0S25c24DAAFIGBA3R7X1Ul0jTcyvto2p0XRqSyfN2uhON4YqU9KFWtPEdbpWp1VT0dQq42rt3HGeaYOOLp02a7ocf9Nkt9dtiyVd6e6Hcm_aK0pl6eLgOqzvyU2ltg4fLn1Ilq9JOnn3Zp9vH5PxzCuYFJ0n_KhUOUrm5zwsJFRVIDgvBGJZQhCiqCpWFlGuIISIMYaFX-RxUYYY8DxnIR-S5_Pd1ja7Pbou2zR7a_rIjIlIyEj2pVexs6qwjXMWq6y1_Z_2kPmQHeFmJ7jZEW52gdubns4mjYj_BskABAP-B336drU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2575979759</pqid></control><display><type>article</type><title>Real-Time Environmental Cognition and Sag Estimation of Transmission Lines Using UAV Equipped With 3-D Lidar System</title><source>IEEE Electronic Library (IEL)</source><creator>Jeong, Siheon ; Kim, Donggeun ; Kim, San ; Ham, Ji-Wan ; Lee, Jae-Kyung ; Oh, Ki-Yong</creator><creatorcontrib>Jeong, Siheon ; Kim, Donggeun ; Kim, San ; Ham, Ji-Wan ; Lee, Jae-Kyung ; Oh, Ki-Yong</creatorcontrib><description>Transmission lines (TLs) are prone to frequent failures owing to their exposure to extreme environments. It is essential to monitor these failures and repair the TLs on time; moreover, their health must be accurately estimated to ensure reliability and safety. Therefore, this study proposes an intelligent monitoring method with novel sensors deployed on a UAV. Specifically, this paper presents a method to not only cognize TLs and their environments in real time but also estimate the sag by combining the measured point-cloud data from a Lidar with the flight information of a UAV. Environmental cognition in real time addresses coordinate transformation and probabilistic downsampling for voxelized mapping, thus ensuring limited hardware requirement. A robust random-sample consensus is introduced to effectively extract point-cloud data for TLs, thereby accurately estimating the sag. Field tests confirmed the accuracy of the proposed method and demonstrated the effectiveness and advantages of the smart environmental cognition system. One flight was sufficient for estimating the sag on both sides of the TLs, demonstrating the economic feasibility of the proposed method. Considering the inherent advantages of the diagnostics and prognostics of a UAV, the proposed method has potential applications in the reliable operation and proactive maintenance of TLs.</description><identifier>ISSN: 0885-8977</identifier><identifier>EISSN: 1937-4208</identifier><identifier>DOI: 10.1109/TPWRD.2020.3024965</identifier><identifier>CODEN: ITPDE5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Cognition ; Cognition &amp; reasoning ; Coordinate transformations ; Estimation ; Extreme environments ; Field tests ; Inspection ; Intelligent inspection ; Laser radar ; Lidar ; light detection and ranging ; Monitoring ; Real time ; Real-time systems ; Sag ; transmission line ; Transmission lines ; unmanned aerial vehicle ; Unmanned aerial vehicles</subject><ispartof>IEEE transactions on power delivery, 2021-10, Vol.36 (5), p.2658-2667</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-517dabe921b36c90ff4533c5eedd046e5ff2dc7ba0607222ec1cb8cd6e43bb263</citedby><cites>FETCH-LOGICAL-c295t-517dabe921b36c90ff4533c5eedd046e5ff2dc7ba0607222ec1cb8cd6e43bb263</cites><orcidid>0000-0003-3495-7292 ; 0000-0002-0532-1212 ; 0000-0001-9061-6033 ; 0000-0003-2895-4749</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9200520$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9200520$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jeong, Siheon</creatorcontrib><creatorcontrib>Kim, Donggeun</creatorcontrib><creatorcontrib>Kim, San</creatorcontrib><creatorcontrib>Ham, Ji-Wan</creatorcontrib><creatorcontrib>Lee, Jae-Kyung</creatorcontrib><creatorcontrib>Oh, Ki-Yong</creatorcontrib><title>Real-Time Environmental Cognition and Sag Estimation of Transmission Lines Using UAV Equipped With 3-D Lidar System</title><title>IEEE transactions on power delivery</title><addtitle>TPWRD</addtitle><description>Transmission lines (TLs) are prone to frequent failures owing to their exposure to extreme environments. It is essential to monitor these failures and repair the TLs on time; moreover, their health must be accurately estimated to ensure reliability and safety. Therefore, this study proposes an intelligent monitoring method with novel sensors deployed on a UAV. Specifically, this paper presents a method to not only cognize TLs and their environments in real time but also estimate the sag by combining the measured point-cloud data from a Lidar with the flight information of a UAV. Environmental cognition in real time addresses coordinate transformation and probabilistic downsampling for voxelized mapping, thus ensuring limited hardware requirement. A robust random-sample consensus is introduced to effectively extract point-cloud data for TLs, thereby accurately estimating the sag. Field tests confirmed the accuracy of the proposed method and demonstrated the effectiveness and advantages of the smart environmental cognition system. One flight was sufficient for estimating the sag on both sides of the TLs, demonstrating the economic feasibility of the proposed method. Considering the inherent advantages of the diagnostics and prognostics of a UAV, the proposed method has potential applications in the reliable operation and proactive maintenance of TLs.</description><subject>Cognition</subject><subject>Cognition &amp; reasoning</subject><subject>Coordinate transformations</subject><subject>Estimation</subject><subject>Extreme environments</subject><subject>Field tests</subject><subject>Inspection</subject><subject>Intelligent inspection</subject><subject>Laser radar</subject><subject>Lidar</subject><subject>light detection and ranging</subject><subject>Monitoring</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>Sag</subject><subject>transmission line</subject><subject>Transmission lines</subject><subject>unmanned aerial vehicle</subject><subject>Unmanned aerial vehicles</subject><issn>0885-8977</issn><issn>1937-4208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtqwzAQRUVpoWnaH2g3gq6djiXLtpYhcR8QaEmcZmlke5wqxLIjOYX8fZ0H3cwww71zmUPIow8j3wf5kn6t5tMRAwYjDiyQobgiA1_yyAsYxNdkAHEsvFhG0S25c24DAAFIGBA3R7X1Ul0jTcyvto2p0XRqSyfN2uhON4YqU9KFWtPEdbpWp1VT0dQq42rt3HGeaYOOLp02a7ocf9Nkt9dtiyVd6e6Hcm_aK0pl6eLgOqzvyU2ltg4fLn1Ilq9JOnn3Zp9vH5PxzCuYFJ0n_KhUOUrm5zwsJFRVIDgvBGJZQhCiqCpWFlGuIISIMYaFX-RxUYYY8DxnIR-S5_Pd1ja7Pbou2zR7a_rIjIlIyEj2pVexs6qwjXMWq6y1_Z_2kPmQHeFmJ7jZEW52gdubns4mjYj_BskABAP-B336drU</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Jeong, Siheon</creator><creator>Kim, Donggeun</creator><creator>Kim, San</creator><creator>Ham, Ji-Wan</creator><creator>Lee, Jae-Kyung</creator><creator>Oh, Ki-Yong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3495-7292</orcidid><orcidid>https://orcid.org/0000-0002-0532-1212</orcidid><orcidid>https://orcid.org/0000-0001-9061-6033</orcidid><orcidid>https://orcid.org/0000-0003-2895-4749</orcidid></search><sort><creationdate>20211001</creationdate><title>Real-Time Environmental Cognition and Sag Estimation of Transmission Lines Using UAV Equipped With 3-D Lidar System</title><author>Jeong, Siheon ; Kim, Donggeun ; Kim, San ; Ham, Ji-Wan ; Lee, Jae-Kyung ; Oh, Ki-Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-517dabe921b36c90ff4533c5eedd046e5ff2dc7ba0607222ec1cb8cd6e43bb263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cognition</topic><topic>Cognition &amp; reasoning</topic><topic>Coordinate transformations</topic><topic>Estimation</topic><topic>Extreme environments</topic><topic>Field tests</topic><topic>Inspection</topic><topic>Intelligent inspection</topic><topic>Laser radar</topic><topic>Lidar</topic><topic>light detection and ranging</topic><topic>Monitoring</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>Sag</topic><topic>transmission line</topic><topic>Transmission lines</topic><topic>unmanned aerial vehicle</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeong, Siheon</creatorcontrib><creatorcontrib>Kim, Donggeun</creatorcontrib><creatorcontrib>Kim, San</creatorcontrib><creatorcontrib>Ham, Ji-Wan</creatorcontrib><creatorcontrib>Lee, Jae-Kyung</creatorcontrib><creatorcontrib>Oh, Ki-Yong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power delivery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jeong, Siheon</au><au>Kim, Donggeun</au><au>Kim, San</au><au>Ham, Ji-Wan</au><au>Lee, Jae-Kyung</au><au>Oh, Ki-Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-Time Environmental Cognition and Sag Estimation of Transmission Lines Using UAV Equipped With 3-D Lidar System</atitle><jtitle>IEEE transactions on power delivery</jtitle><stitle>TPWRD</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>36</volume><issue>5</issue><spage>2658</spage><epage>2667</epage><pages>2658-2667</pages><issn>0885-8977</issn><eissn>1937-4208</eissn><coden>ITPDE5</coden><abstract>Transmission lines (TLs) are prone to frequent failures owing to their exposure to extreme environments. It is essential to monitor these failures and repair the TLs on time; moreover, their health must be accurately estimated to ensure reliability and safety. Therefore, this study proposes an intelligent monitoring method with novel sensors deployed on a UAV. Specifically, this paper presents a method to not only cognize TLs and their environments in real time but also estimate the sag by combining the measured point-cloud data from a Lidar with the flight information of a UAV. Environmental cognition in real time addresses coordinate transformation and probabilistic downsampling for voxelized mapping, thus ensuring limited hardware requirement. A robust random-sample consensus is introduced to effectively extract point-cloud data for TLs, thereby accurately estimating the sag. Field tests confirmed the accuracy of the proposed method and demonstrated the effectiveness and advantages of the smart environmental cognition system. One flight was sufficient for estimating the sag on both sides of the TLs, demonstrating the economic feasibility of the proposed method. Considering the inherent advantages of the diagnostics and prognostics of a UAV, the proposed method has potential applications in the reliable operation and proactive maintenance of TLs.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRD.2020.3024965</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3495-7292</orcidid><orcidid>https://orcid.org/0000-0002-0532-1212</orcidid><orcidid>https://orcid.org/0000-0001-9061-6033</orcidid><orcidid>https://orcid.org/0000-0003-2895-4749</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8977
ispartof IEEE transactions on power delivery, 2021-10, Vol.36 (5), p.2658-2667
issn 0885-8977
1937-4208
language eng
recordid cdi_proquest_journals_2575979759
source IEEE Electronic Library (IEL)
subjects Cognition
Cognition & reasoning
Coordinate transformations
Estimation
Extreme environments
Field tests
Inspection
Intelligent inspection
Laser radar
Lidar
light detection and ranging
Monitoring
Real time
Real-time systems
Sag
transmission line
Transmission lines
unmanned aerial vehicle
Unmanned aerial vehicles
title Real-Time Environmental Cognition and Sag Estimation of Transmission Lines Using UAV Equipped With 3-D Lidar System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T09%3A27%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-Time%20Environmental%20Cognition%20and%20Sag%20Estimation%20of%20Transmission%20Lines%20Using%20UAV%20Equipped%20With%203-D%20Lidar%20System&rft.jtitle=IEEE%20transactions%20on%20power%20delivery&rft.au=Jeong,%20Siheon&rft.date=2021-10-01&rft.volume=36&rft.issue=5&rft.spage=2658&rft.epage=2667&rft.pages=2658-2667&rft.issn=0885-8977&rft.eissn=1937-4208&rft.coden=ITPDE5&rft_id=info:doi/10.1109/TPWRD.2020.3024965&rft_dat=%3Cproquest_RIE%3E2575979759%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2575979759&rft_id=info:pmid/&rft_ieee_id=9200520&rfr_iscdi=true