Preparation of tantalum metal powder by magnesium gas reduction of tantalum pentoxide with different initial particle size

Ta metal is frequently used as a raw material in the production of military hardware and electromagnetic components; therefore, obtaining high-purity tantalum is emerging as an important goal. Here, Ta metal powder was successfully prepared by reduction of Mg gas with tantalum pentoxide (Ta2O5). The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of refractory metals & hard materials 2021-11, Vol.100, p.105620, Article 105620
Hauptverfasser: Hwang, Seon-Min, Park, Su-Jin, Wang, Jei-Pil, Park, Yong-Ho, Lee, Dong-Won
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 105620
container_title International journal of refractory metals & hard materials
container_volume 100
creator Hwang, Seon-Min
Park, Su-Jin
Wang, Jei-Pil
Park, Yong-Ho
Lee, Dong-Won
description Ta metal is frequently used as a raw material in the production of military hardware and electromagnetic components; therefore, obtaining high-purity tantalum is emerging as an important goal. Here, Ta metal powder was successfully prepared by reduction of Mg gas with tantalum pentoxide (Ta2O5). The reduction behavior was studied kinetically using Ta2O5 with different initial particle sizes (0.3 and 1.2 μm). Reduction temperature varied in the range from 1073 to 1273 K. In the X-ray diffraction patterns of reduced powders, pure Ta peaks appear above 1123 K when using the 0.3 μm initial powder, and at 1173 K when using the 1.2 μm initial powder. With increasing reduction temperature, reduction rates were higher with the use of the 0.3 μm powder than with the coarser 1.2 μm powder. This behavior resulted in different activation energies for Mg-reduction (5.234 and 8.695 kJ/mol for the 0.3 and 1.2 μm powder, respectively). In the powder reduced at 1273 K, the oxygen content was lowered to 0.66 and 0.88 wt% for the 1.2 and 0.3 μm powders, respectively; this is explained by differences in the specific surface area according to particle size. •Metallic tantalum powder was prepared by reduction of Mg gas with Ta2O5.•Reduction behavior varied with initial Ta2O5 particle size (0.3 vs. 1.2 μm).•Pure tantalum formed above 1123 K (1173 K) using 0.3-μm (1.2-μm) initial powder.•Reduction rate (Mg activation energy) was higher (lower) for 0.3-μm powder.•Oxygen content higher for 0.3-μm powder reflecting different specific surface area.
doi_str_mv 10.1016/j.ijrmhm.2021.105620
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2575939544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263436821001529</els_id><sourcerecordid>2575939544</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-ed9b4c4db5c09dd11be958e8afe8ea303248269d3ff7cd4ec4d9dc9107acf7503</originalsourceid><addsrcrecordid>eNp9kEtLQzEQhYMoWKv_wEXA9a153Uc2gogvKOhC1yFNJppL78MktdZfb8p1J7gaOHPOGeZD6JySBSW0umwXvg3de7dghNEslRUjB2jGGOUFl7Q-RDPCKl4IXjXH6CTGlhBSyYrO0PdzgFEHnfzQ48HhpPuk15sOd5AnHoethYBXO9zptx6iz5s3HXEAuzF_MiP0afjyFvDWp3dsvXMQsoZ975Pf1-mQvFkDjv4bTtGR0-sIZ79zjl7vbl9uHorl0_3jzfWyMJyLVICVK2GEXZWGSGspXYEsG2i0gwY0J5yJhlXScudqYwVkq7RGUlJr4-qS8Dm6mHrHMHxsICbVDpvQ55OKlXUpuSyFyC4xuUwYYgzg1Bh8p8NOUaL2lFWrJspqT1lNlHPsaopB_uDTQ1DReOgNWB_AJGUH_3_BD-YJi0o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2575939544</pqid></control><display><type>article</type><title>Preparation of tantalum metal powder by magnesium gas reduction of tantalum pentoxide with different initial particle size</title><source>Elsevier ScienceDirect Journals</source><creator>Hwang, Seon-Min ; Park, Su-Jin ; Wang, Jei-Pil ; Park, Yong-Ho ; Lee, Dong-Won</creator><creatorcontrib>Hwang, Seon-Min ; Park, Su-Jin ; Wang, Jei-Pil ; Park, Yong-Ho ; Lee, Dong-Won</creatorcontrib><description>Ta metal is frequently used as a raw material in the production of military hardware and electromagnetic components; therefore, obtaining high-purity tantalum is emerging as an important goal. Here, Ta metal powder was successfully prepared by reduction of Mg gas with tantalum pentoxide (Ta2O5). The reduction behavior was studied kinetically using Ta2O5 with different initial particle sizes (0.3 and 1.2 μm). Reduction temperature varied in the range from 1073 to 1273 K. In the X-ray diffraction patterns of reduced powders, pure Ta peaks appear above 1123 K when using the 0.3 μm initial powder, and at 1173 K when using the 1.2 μm initial powder. With increasing reduction temperature, reduction rates were higher with the use of the 0.3 μm powder than with the coarser 1.2 μm powder. This behavior resulted in different activation energies for Mg-reduction (5.234 and 8.695 kJ/mol for the 0.3 and 1.2 μm powder, respectively). In the powder reduced at 1273 K, the oxygen content was lowered to 0.66 and 0.88 wt% for the 1.2 and 0.3 μm powders, respectively; this is explained by differences in the specific surface area according to particle size. •Metallic tantalum powder was prepared by reduction of Mg gas with Ta2O5.•Reduction behavior varied with initial Ta2O5 particle size (0.3 vs. 1.2 μm).•Pure tantalum formed above 1123 K (1173 K) using 0.3-μm (1.2-μm) initial powder.•Reduction rate (Mg activation energy) was higher (lower) for 0.3-μm powder.•Oxygen content higher for 0.3-μm powder reflecting different specific surface area.</description><identifier>ISSN: 0263-4368</identifier><identifier>EISSN: 2213-3917</identifier><identifier>DOI: 10.1016/j.ijrmhm.2021.105620</identifier><language>eng</language><publisher>Shrewsbury: Elsevier Ltd</publisher><subject>Activation energy ; Diffraction patterns ; Magnesium ; Magnesium reduction ; Metal powders ; MgO ; Oxygen content ; Particle size ; Ta2O5 ; Tantalum ; Tantalum oxides ; Tantalum powder</subject><ispartof>International journal of refractory metals &amp; hard materials, 2021-11, Vol.100, p.105620, Article 105620</ispartof><rights>2021</rights><rights>Copyright Elsevier BV Nov 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-ed9b4c4db5c09dd11be958e8afe8ea303248269d3ff7cd4ec4d9dc9107acf7503</citedby><cites>FETCH-LOGICAL-c334t-ed9b4c4db5c09dd11be958e8afe8ea303248269d3ff7cd4ec4d9dc9107acf7503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0263436821001529$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Hwang, Seon-Min</creatorcontrib><creatorcontrib>Park, Su-Jin</creatorcontrib><creatorcontrib>Wang, Jei-Pil</creatorcontrib><creatorcontrib>Park, Yong-Ho</creatorcontrib><creatorcontrib>Lee, Dong-Won</creatorcontrib><title>Preparation of tantalum metal powder by magnesium gas reduction of tantalum pentoxide with different initial particle size</title><title>International journal of refractory metals &amp; hard materials</title><description>Ta metal is frequently used as a raw material in the production of military hardware and electromagnetic components; therefore, obtaining high-purity tantalum is emerging as an important goal. Here, Ta metal powder was successfully prepared by reduction of Mg gas with tantalum pentoxide (Ta2O5). The reduction behavior was studied kinetically using Ta2O5 with different initial particle sizes (0.3 and 1.2 μm). Reduction temperature varied in the range from 1073 to 1273 K. In the X-ray diffraction patterns of reduced powders, pure Ta peaks appear above 1123 K when using the 0.3 μm initial powder, and at 1173 K when using the 1.2 μm initial powder. With increasing reduction temperature, reduction rates were higher with the use of the 0.3 μm powder than with the coarser 1.2 μm powder. This behavior resulted in different activation energies for Mg-reduction (5.234 and 8.695 kJ/mol for the 0.3 and 1.2 μm powder, respectively). In the powder reduced at 1273 K, the oxygen content was lowered to 0.66 and 0.88 wt% for the 1.2 and 0.3 μm powders, respectively; this is explained by differences in the specific surface area according to particle size. •Metallic tantalum powder was prepared by reduction of Mg gas with Ta2O5.•Reduction behavior varied with initial Ta2O5 particle size (0.3 vs. 1.2 μm).•Pure tantalum formed above 1123 K (1173 K) using 0.3-μm (1.2-μm) initial powder.•Reduction rate (Mg activation energy) was higher (lower) for 0.3-μm powder.•Oxygen content higher for 0.3-μm powder reflecting different specific surface area.</description><subject>Activation energy</subject><subject>Diffraction patterns</subject><subject>Magnesium</subject><subject>Magnesium reduction</subject><subject>Metal powders</subject><subject>MgO</subject><subject>Oxygen content</subject><subject>Particle size</subject><subject>Ta2O5</subject><subject>Tantalum</subject><subject>Tantalum oxides</subject><subject>Tantalum powder</subject><issn>0263-4368</issn><issn>2213-3917</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLQzEQhYMoWKv_wEXA9a153Uc2gogvKOhC1yFNJppL78MktdZfb8p1J7gaOHPOGeZD6JySBSW0umwXvg3de7dghNEslRUjB2jGGOUFl7Q-RDPCKl4IXjXH6CTGlhBSyYrO0PdzgFEHnfzQ48HhpPuk15sOd5AnHoethYBXO9zptx6iz5s3HXEAuzF_MiP0afjyFvDWp3dsvXMQsoZ975Pf1-mQvFkDjv4bTtGR0-sIZ79zjl7vbl9uHorl0_3jzfWyMJyLVICVK2GEXZWGSGspXYEsG2i0gwY0J5yJhlXScudqYwVkq7RGUlJr4-qS8Dm6mHrHMHxsICbVDpvQ55OKlXUpuSyFyC4xuUwYYgzg1Bh8p8NOUaL2lFWrJspqT1lNlHPsaopB_uDTQ1DReOgNWB_AJGUH_3_BD-YJi0o</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Hwang, Seon-Min</creator><creator>Park, Su-Jin</creator><creator>Wang, Jei-Pil</creator><creator>Park, Yong-Ho</creator><creator>Lee, Dong-Won</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>202111</creationdate><title>Preparation of tantalum metal powder by magnesium gas reduction of tantalum pentoxide with different initial particle size</title><author>Hwang, Seon-Min ; Park, Su-Jin ; Wang, Jei-Pil ; Park, Yong-Ho ; Lee, Dong-Won</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-ed9b4c4db5c09dd11be958e8afe8ea303248269d3ff7cd4ec4d9dc9107acf7503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Activation energy</topic><topic>Diffraction patterns</topic><topic>Magnesium</topic><topic>Magnesium reduction</topic><topic>Metal powders</topic><topic>MgO</topic><topic>Oxygen content</topic><topic>Particle size</topic><topic>Ta2O5</topic><topic>Tantalum</topic><topic>Tantalum oxides</topic><topic>Tantalum powder</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hwang, Seon-Min</creatorcontrib><creatorcontrib>Park, Su-Jin</creatorcontrib><creatorcontrib>Wang, Jei-Pil</creatorcontrib><creatorcontrib>Park, Yong-Ho</creatorcontrib><creatorcontrib>Lee, Dong-Won</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of refractory metals &amp; hard materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hwang, Seon-Min</au><au>Park, Su-Jin</au><au>Wang, Jei-Pil</au><au>Park, Yong-Ho</au><au>Lee, Dong-Won</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation of tantalum metal powder by magnesium gas reduction of tantalum pentoxide with different initial particle size</atitle><jtitle>International journal of refractory metals &amp; hard materials</jtitle><date>2021-11</date><risdate>2021</risdate><volume>100</volume><spage>105620</spage><pages>105620-</pages><artnum>105620</artnum><issn>0263-4368</issn><eissn>2213-3917</eissn><abstract>Ta metal is frequently used as a raw material in the production of military hardware and electromagnetic components; therefore, obtaining high-purity tantalum is emerging as an important goal. Here, Ta metal powder was successfully prepared by reduction of Mg gas with tantalum pentoxide (Ta2O5). The reduction behavior was studied kinetically using Ta2O5 with different initial particle sizes (0.3 and 1.2 μm). Reduction temperature varied in the range from 1073 to 1273 K. In the X-ray diffraction patterns of reduced powders, pure Ta peaks appear above 1123 K when using the 0.3 μm initial powder, and at 1173 K when using the 1.2 μm initial powder. With increasing reduction temperature, reduction rates were higher with the use of the 0.3 μm powder than with the coarser 1.2 μm powder. This behavior resulted in different activation energies for Mg-reduction (5.234 and 8.695 kJ/mol for the 0.3 and 1.2 μm powder, respectively). In the powder reduced at 1273 K, the oxygen content was lowered to 0.66 and 0.88 wt% for the 1.2 and 0.3 μm powders, respectively; this is explained by differences in the specific surface area according to particle size. •Metallic tantalum powder was prepared by reduction of Mg gas with Ta2O5.•Reduction behavior varied with initial Ta2O5 particle size (0.3 vs. 1.2 μm).•Pure tantalum formed above 1123 K (1173 K) using 0.3-μm (1.2-μm) initial powder.•Reduction rate (Mg activation energy) was higher (lower) for 0.3-μm powder.•Oxygen content higher for 0.3-μm powder reflecting different specific surface area.</abstract><cop>Shrewsbury</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijrmhm.2021.105620</doi></addata></record>
fulltext fulltext
identifier ISSN: 0263-4368
ispartof International journal of refractory metals & hard materials, 2021-11, Vol.100, p.105620, Article 105620
issn 0263-4368
2213-3917
language eng
recordid cdi_proquest_journals_2575939544
source Elsevier ScienceDirect Journals
subjects Activation energy
Diffraction patterns
Magnesium
Magnesium reduction
Metal powders
MgO
Oxygen content
Particle size
Ta2O5
Tantalum
Tantalum oxides
Tantalum powder
title Preparation of tantalum metal powder by magnesium gas reduction of tantalum pentoxide with different initial particle size
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T16%3A02%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20of%20tantalum%20metal%20powder%20by%20magnesium%20gas%20reduction%20of%20tantalum%20pentoxide%20with%20different%20initial%20particle%20size&rft.jtitle=International%20journal%20of%20refractory%20metals%20&%20hard%20materials&rft.au=Hwang,%20Seon-Min&rft.date=2021-11&rft.volume=100&rft.spage=105620&rft.pages=105620-&rft.artnum=105620&rft.issn=0263-4368&rft.eissn=2213-3917&rft_id=info:doi/10.1016/j.ijrmhm.2021.105620&rft_dat=%3Cproquest_cross%3E2575939544%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2575939544&rft_id=info:pmid/&rft_els_id=S0263436821001529&rfr_iscdi=true