Initial cyclic hardening behavior of cracked structures under large-amplitude cyclic loading

[Display omitted] •A hardening model is proposed to simulate deformation of cracked structure under large amplitude cyclic loading.•Cyclic C(T) tests for TP304 stainless steel is performed with two load amplitudes.•FE debonding analysis is applied to develop the proposed hardening model.•The model c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering fracture mechanics 2021-09, Vol.254, p.107911, Article 107911
Hauptverfasser: Hwang, Jin-Ha, Kim, Yun-Jae, Kim, Jin-Weon, Kim, Sang-Eon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 107911
container_title Engineering fracture mechanics
container_volume 254
creator Hwang, Jin-Ha
Kim, Yun-Jae
Kim, Jin-Weon
Kim, Sang-Eon
description [Display omitted] •A hardening model is proposed to simulate deformation of cracked structure under large amplitude cyclic loading.•Cyclic C(T) tests for TP304 stainless steel is performed with two load amplitudes.•FE debonding analysis is applied to develop the proposed hardening model.•The model calculates isotropic hardening in the first loading cycle.•From the unloading of the first cycle, a Chaboche combined hardening model is used. A new cyclic hardening model is proposed based on combined experimental and numerical analyses to simulate the deformation of a cracked structure under large amplitude cyclic loading. In the experiment conducted herein, compact tension specimen tests made of TP304 stainless steel were subjected to large-amplitude cyclic loading. Then, finite element (FE) analysis was performed using the ABAQUS debond option to develop a cyclic hardening model. In the proposed cyclic hardening law, isotropic hardening was calculated in the first loading cycle. To assess the unloading of the first cycle, a Chaboche combined hardening model was used. The model results agreed well with the experimental displacement data. The effects of hardening in the first loading cycle on the yield surface and equivalent plastic strains in the subsequent cycles are presented as well.
doi_str_mv 10.1016/j.engfracmech.2021.107911
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2575932045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013794421003398</els_id><sourcerecordid>2575932045</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-5b886d70b47966b39258184559ed3617efd213088ba3fa9d847f7a83e37ce043</originalsourceid><addsrcrecordid>eNqNkF1LwzAUhoMoOKf_oeJ1Z9IkTXIpw4_BwJtdCiFNTrfUrp1JO9i_N6MKXnp1Dof3g_MgdE_wgmBSPjYL6LZ1MHYPdrcocEHSXShCLtCMSEFzQQm_RDOMSdoVY9foJsYGYyxKiWfoY9X5wZs2syfbepvtTHDQ-W6bVbAzR9-HrK8zmwo-wWVxCKMdxgAxGzsHIWtN2EJu9ofWD6OD35S2Ny5l3KKr2rQR7n7mHG1enjfLt3z9_rpaPq1zS5kacl5JWTqBKyZUWVZUFVwSyThX4GhJBNSuIBRLWRlaG-UkE7UwkgIVFjCjc_QwxR5C_zVCHHTTj6FLjbrggitaYMaTSk0qG_oYA9T6EPzehJMmWJ9Z6kb_YanPLPXEMnmXkxfSF0cPQUfrobPgfAA7aNf7f6R8A-lkg08</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2575932045</pqid></control><display><type>article</type><title>Initial cyclic hardening behavior of cracked structures under large-amplitude cyclic loading</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Hwang, Jin-Ha ; Kim, Yun-Jae ; Kim, Jin-Weon ; Kim, Sang-Eon</creator><creatorcontrib>Hwang, Jin-Ha ; Kim, Yun-Jae ; Kim, Jin-Weon ; Kim, Sang-Eon</creatorcontrib><description>[Display omitted] •A hardening model is proposed to simulate deformation of cracked structure under large amplitude cyclic loading.•Cyclic C(T) tests for TP304 stainless steel is performed with two load amplitudes.•FE debonding analysis is applied to develop the proposed hardening model.•The model calculates isotropic hardening in the first loading cycle.•From the unloading of the first cycle, a Chaboche combined hardening model is used. A new cyclic hardening model is proposed based on combined experimental and numerical analyses to simulate the deformation of a cracked structure under large amplitude cyclic loading. In the experiment conducted herein, compact tension specimen tests made of TP304 stainless steel were subjected to large-amplitude cyclic loading. Then, finite element (FE) analysis was performed using the ABAQUS debond option to develop a cyclic hardening model. In the proposed cyclic hardening law, isotropic hardening was calculated in the first loading cycle. To assess the unloading of the first cycle, a Chaboche combined hardening model was used. The model results agreed well with the experimental displacement data. The effects of hardening in the first loading cycle on the yield surface and equivalent plastic strains in the subsequent cycles are presented as well.</description><identifier>ISSN: 0013-7944</identifier><identifier>EISSN: 1873-7315</identifier><identifier>DOI: 10.1016/j.engfracmech.2021.107911</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Amplitudes ; Compact tension ; Cracked specimen ; Cyclic hardening model ; Cyclic loads ; FE debond analysis ; Finite element method ; Hardening ; Large amplitude cyclic loading ; Mathematical models ; Stainless steels</subject><ispartof>Engineering fracture mechanics, 2021-09, Vol.254, p.107911, Article 107911</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Sep 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-5b886d70b47966b39258184559ed3617efd213088ba3fa9d847f7a83e37ce043</citedby><cites>FETCH-LOGICAL-c349t-5b886d70b47966b39258184559ed3617efd213088ba3fa9d847f7a83e37ce043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.engfracmech.2021.107911$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Hwang, Jin-Ha</creatorcontrib><creatorcontrib>Kim, Yun-Jae</creatorcontrib><creatorcontrib>Kim, Jin-Weon</creatorcontrib><creatorcontrib>Kim, Sang-Eon</creatorcontrib><title>Initial cyclic hardening behavior of cracked structures under large-amplitude cyclic loading</title><title>Engineering fracture mechanics</title><description>[Display omitted] •A hardening model is proposed to simulate deformation of cracked structure under large amplitude cyclic loading.•Cyclic C(T) tests for TP304 stainless steel is performed with two load amplitudes.•FE debonding analysis is applied to develop the proposed hardening model.•The model calculates isotropic hardening in the first loading cycle.•From the unloading of the first cycle, a Chaboche combined hardening model is used. A new cyclic hardening model is proposed based on combined experimental and numerical analyses to simulate the deformation of a cracked structure under large amplitude cyclic loading. In the experiment conducted herein, compact tension specimen tests made of TP304 stainless steel were subjected to large-amplitude cyclic loading. Then, finite element (FE) analysis was performed using the ABAQUS debond option to develop a cyclic hardening model. In the proposed cyclic hardening law, isotropic hardening was calculated in the first loading cycle. To assess the unloading of the first cycle, a Chaboche combined hardening model was used. The model results agreed well with the experimental displacement data. The effects of hardening in the first loading cycle on the yield surface and equivalent plastic strains in the subsequent cycles are presented as well.</description><subject>Amplitudes</subject><subject>Compact tension</subject><subject>Cracked specimen</subject><subject>Cyclic hardening model</subject><subject>Cyclic loads</subject><subject>FE debond analysis</subject><subject>Finite element method</subject><subject>Hardening</subject><subject>Large amplitude cyclic loading</subject><subject>Mathematical models</subject><subject>Stainless steels</subject><issn>0013-7944</issn><issn>1873-7315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNkF1LwzAUhoMoOKf_oeJ1Z9IkTXIpw4_BwJtdCiFNTrfUrp1JO9i_N6MKXnp1Dof3g_MgdE_wgmBSPjYL6LZ1MHYPdrcocEHSXShCLtCMSEFzQQm_RDOMSdoVY9foJsYGYyxKiWfoY9X5wZs2syfbepvtTHDQ-W6bVbAzR9-HrK8zmwo-wWVxCKMdxgAxGzsHIWtN2EJu9ofWD6OD35S2Ny5l3KKr2rQR7n7mHG1enjfLt3z9_rpaPq1zS5kacl5JWTqBKyZUWVZUFVwSyThX4GhJBNSuIBRLWRlaG-UkE7UwkgIVFjCjc_QwxR5C_zVCHHTTj6FLjbrggitaYMaTSk0qG_oYA9T6EPzehJMmWJ9Z6kb_YanPLPXEMnmXkxfSF0cPQUfrobPgfAA7aNf7f6R8A-lkg08</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Hwang, Jin-Ha</creator><creator>Kim, Yun-Jae</creator><creator>Kim, Jin-Weon</creator><creator>Kim, Sang-Eon</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>202109</creationdate><title>Initial cyclic hardening behavior of cracked structures under large-amplitude cyclic loading</title><author>Hwang, Jin-Ha ; Kim, Yun-Jae ; Kim, Jin-Weon ; Kim, Sang-Eon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-5b886d70b47966b39258184559ed3617efd213088ba3fa9d847f7a83e37ce043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amplitudes</topic><topic>Compact tension</topic><topic>Cracked specimen</topic><topic>Cyclic hardening model</topic><topic>Cyclic loads</topic><topic>FE debond analysis</topic><topic>Finite element method</topic><topic>Hardening</topic><topic>Large amplitude cyclic loading</topic><topic>Mathematical models</topic><topic>Stainless steels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hwang, Jin-Ha</creatorcontrib><creatorcontrib>Kim, Yun-Jae</creatorcontrib><creatorcontrib>Kim, Jin-Weon</creatorcontrib><creatorcontrib>Kim, Sang-Eon</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Engineering fracture mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hwang, Jin-Ha</au><au>Kim, Yun-Jae</au><au>Kim, Jin-Weon</au><au>Kim, Sang-Eon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Initial cyclic hardening behavior of cracked structures under large-amplitude cyclic loading</atitle><jtitle>Engineering fracture mechanics</jtitle><date>2021-09</date><risdate>2021</risdate><volume>254</volume><spage>107911</spage><pages>107911-</pages><artnum>107911</artnum><issn>0013-7944</issn><eissn>1873-7315</eissn><abstract>[Display omitted] •A hardening model is proposed to simulate deformation of cracked structure under large amplitude cyclic loading.•Cyclic C(T) tests for TP304 stainless steel is performed with two load amplitudes.•FE debonding analysis is applied to develop the proposed hardening model.•The model calculates isotropic hardening in the first loading cycle.•From the unloading of the first cycle, a Chaboche combined hardening model is used. A new cyclic hardening model is proposed based on combined experimental and numerical analyses to simulate the deformation of a cracked structure under large amplitude cyclic loading. In the experiment conducted herein, compact tension specimen tests made of TP304 stainless steel were subjected to large-amplitude cyclic loading. Then, finite element (FE) analysis was performed using the ABAQUS debond option to develop a cyclic hardening model. In the proposed cyclic hardening law, isotropic hardening was calculated in the first loading cycle. To assess the unloading of the first cycle, a Chaboche combined hardening model was used. The model results agreed well with the experimental displacement data. The effects of hardening in the first loading cycle on the yield surface and equivalent plastic strains in the subsequent cycles are presented as well.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.engfracmech.2021.107911</doi></addata></record>
fulltext fulltext
identifier ISSN: 0013-7944
ispartof Engineering fracture mechanics, 2021-09, Vol.254, p.107911, Article 107911
issn 0013-7944
1873-7315
language eng
recordid cdi_proquest_journals_2575932045
source Elsevier ScienceDirect Journals Complete - AutoHoldings
subjects Amplitudes
Compact tension
Cracked specimen
Cyclic hardening model
Cyclic loads
FE debond analysis
Finite element method
Hardening
Large amplitude cyclic loading
Mathematical models
Stainless steels
title Initial cyclic hardening behavior of cracked structures under large-amplitude cyclic loading
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T04%3A36%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Initial%20cyclic%20hardening%20behavior%20of%20cracked%20structures%20under%20large-amplitude%20cyclic%20loading&rft.jtitle=Engineering%20fracture%20mechanics&rft.au=Hwang,%20Jin-Ha&rft.date=2021-09&rft.volume=254&rft.spage=107911&rft.pages=107911-&rft.artnum=107911&rft.issn=0013-7944&rft.eissn=1873-7315&rft_id=info:doi/10.1016/j.engfracmech.2021.107911&rft_dat=%3Cproquest_cross%3E2575932045%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2575932045&rft_id=info:pmid/&rft_els_id=S0013794421003398&rfr_iscdi=true