A generic multi-sensor fusion scheme for localization of autonomous platforms using moving horizon estimation

In this paper, a generic multi-sensor fusion framework is developed for the localization of intelligent vehicles and mobile robots. The localization framework is based on moving horizon estimation (MHE). Unlike the commonly used probabilistic filtering algorithms – for example, extended Kalman filte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the Institute of Measurement and Control 2021-11, Vol.43 (15), p.3413-3427
Hauptverfasser: Osman, Mostafa, Mehrez, Mohamed W, Daoud, Mohamed A, Hussein, Ahmed, Jeon, Soo, Melek, William
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3427
container_issue 15
container_start_page 3413
container_title Transactions of the Institute of Measurement and Control
container_volume 43
creator Osman, Mostafa
Mehrez, Mohamed W
Daoud, Mohamed A
Hussein, Ahmed
Jeon, Soo
Melek, William
description In this paper, a generic multi-sensor fusion framework is developed for the localization of intelligent vehicles and mobile robots. The localization framework is based on moving horizon estimation (MHE). Unlike the commonly used probabilistic filtering algorithms – for example, extended Kalman filter (EKF) and unscented Kalman filter (UKF) – MHE relies on solving successive least squares optimization problems over the innovation of multiple sensors’ measurements and a specific estimation horizon. In this paper, we present an efficient and generic multi-sensor fusion scheme, based on MHE. The proposed multi-sensor fusion scheme is capable of operating with different sensors’ rates, missing measurements, and outliers. Moreover, the proposed scheme is based on a multi-threading architecture to reduce its computational cost, making it more feasible for practical applications. The MHE fusion method is tested using simulated data as well as real experimental data sequences from an intelligent vehicle and a mobile robot combining measurements from different sensors to get accurate localization results. The performance of MHE is compared against that of UKF, where the MHE estimation results show superior performance.
doi_str_mv 10.1177/01423312211011454
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2575793214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_01423312211011454</sage_id><sourcerecordid>2575793214</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-4523551ca39be4af6dd2155453c42f66777d5786f2dd49c83b068219cf3620353</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvA89ZMPrvHUtQKBS96XtJs0m7ZbGqyK9hfb9YKHsTTCzPPMzMMQrdAZgBK3RPglDGgFIAAcMHP0AS4UgVhsjxHk7FfjMAlukppTwjhXPIJ8gu8tZ2NjcF-aPumSLZLIWI3pCZ0OJmd9Ra7XGmD0W1z1P1YDw7roQ9d8GFI-NDqPiM-4Wx1W-zDxxi7EJtjhm3qG__tXaMLp9tkb35yit4eH16Xq2L98vS8XKwLw4ToCy5oTjCalRvLtZN1TUEILpjh1EmplKqFmktH65qXZs42RM4plMYxSQkTbIruTnMPMbwPeX-1D0Ps8sqKCiVUySjwTMGJMjGkFK2rDjEfGj8rINX41erPV7MzOzlJb-3v1P-FL9T5d70</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2575793214</pqid></control><display><type>article</type><title>A generic multi-sensor fusion scheme for localization of autonomous platforms using moving horizon estimation</title><source>SAGE Journals</source><creator>Osman, Mostafa ; Mehrez, Mohamed W ; Daoud, Mohamed A ; Hussein, Ahmed ; Jeon, Soo ; Melek, William</creator><creatorcontrib>Osman, Mostafa ; Mehrez, Mohamed W ; Daoud, Mohamed A ; Hussein, Ahmed ; Jeon, Soo ; Melek, William</creatorcontrib><description>In this paper, a generic multi-sensor fusion framework is developed for the localization of intelligent vehicles and mobile robots. The localization framework is based on moving horizon estimation (MHE). Unlike the commonly used probabilistic filtering algorithms – for example, extended Kalman filter (EKF) and unscented Kalman filter (UKF) – MHE relies on solving successive least squares optimization problems over the innovation of multiple sensors’ measurements and a specific estimation horizon. In this paper, we present an efficient and generic multi-sensor fusion scheme, based on MHE. The proposed multi-sensor fusion scheme is capable of operating with different sensors’ rates, missing measurements, and outliers. Moreover, the proposed scheme is based on a multi-threading architecture to reduce its computational cost, making it more feasible for practical applications. The MHE fusion method is tested using simulated data as well as real experimental data sequences from an intelligent vehicle and a mobile robot combining measurements from different sensors to get accurate localization results. The performance of MHE is compared against that of UKF, where the MHE estimation results show superior performance.</description><identifier>ISSN: 0142-3312</identifier><identifier>EISSN: 1477-0369</identifier><identifier>DOI: 10.1177/01423312211011454</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Algorithms ; Extended Kalman filter ; Intelligent vehicles ; Localization ; Multisensor fusion ; Optimization ; Outliers (statistics) ; Robots ; Sensors</subject><ispartof>Transactions of the Institute of Measurement and Control, 2021-11, Vol.43 (15), p.3413-3427</ispartof><rights>The Author(s) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-4523551ca39be4af6dd2155453c42f66777d5786f2dd49c83b068219cf3620353</citedby><cites>FETCH-LOGICAL-c355t-4523551ca39be4af6dd2155453c42f66777d5786f2dd49c83b068219cf3620353</cites><orcidid>0000-0002-6070-0610</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/01423312211011454$$EPDF$$P50$$Gsage$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/01423312211011454$$EHTML$$P50$$Gsage$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Osman, Mostafa</creatorcontrib><creatorcontrib>Mehrez, Mohamed W</creatorcontrib><creatorcontrib>Daoud, Mohamed A</creatorcontrib><creatorcontrib>Hussein, Ahmed</creatorcontrib><creatorcontrib>Jeon, Soo</creatorcontrib><creatorcontrib>Melek, William</creatorcontrib><title>A generic multi-sensor fusion scheme for localization of autonomous platforms using moving horizon estimation</title><title>Transactions of the Institute of Measurement and Control</title><description>In this paper, a generic multi-sensor fusion framework is developed for the localization of intelligent vehicles and mobile robots. The localization framework is based on moving horizon estimation (MHE). Unlike the commonly used probabilistic filtering algorithms – for example, extended Kalman filter (EKF) and unscented Kalman filter (UKF) – MHE relies on solving successive least squares optimization problems over the innovation of multiple sensors’ measurements and a specific estimation horizon. In this paper, we present an efficient and generic multi-sensor fusion scheme, based on MHE. The proposed multi-sensor fusion scheme is capable of operating with different sensors’ rates, missing measurements, and outliers. Moreover, the proposed scheme is based on a multi-threading architecture to reduce its computational cost, making it more feasible for practical applications. The MHE fusion method is tested using simulated data as well as real experimental data sequences from an intelligent vehicle and a mobile robot combining measurements from different sensors to get accurate localization results. The performance of MHE is compared against that of UKF, where the MHE estimation results show superior performance.</description><subject>Algorithms</subject><subject>Extended Kalman filter</subject><subject>Intelligent vehicles</subject><subject>Localization</subject><subject>Multisensor fusion</subject><subject>Optimization</subject><subject>Outliers (statistics)</subject><subject>Robots</subject><subject>Sensors</subject><issn>0142-3312</issn><issn>1477-0369</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wFvA89ZMPrvHUtQKBS96XtJs0m7ZbGqyK9hfb9YKHsTTCzPPMzMMQrdAZgBK3RPglDGgFIAAcMHP0AS4UgVhsjxHk7FfjMAlukppTwjhXPIJ8gu8tZ2NjcF-aPumSLZLIWI3pCZ0OJmd9Ra7XGmD0W1z1P1YDw7roQ9d8GFI-NDqPiM-4Wx1W-zDxxi7EJtjhm3qG__tXaMLp9tkb35yit4eH16Xq2L98vS8XKwLw4ToCy5oTjCalRvLtZN1TUEILpjh1EmplKqFmktH65qXZs42RM4plMYxSQkTbIruTnMPMbwPeX-1D0Ps8sqKCiVUySjwTMGJMjGkFK2rDjEfGj8rINX41erPV7MzOzlJb-3v1P-FL9T5d70</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Osman, Mostafa</creator><creator>Mehrez, Mohamed W</creator><creator>Daoud, Mohamed A</creator><creator>Hussein, Ahmed</creator><creator>Jeon, Soo</creator><creator>Melek, William</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>AFRWT</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6070-0610</orcidid></search><sort><creationdate>202111</creationdate><title>A generic multi-sensor fusion scheme for localization of autonomous platforms using moving horizon estimation</title><author>Osman, Mostafa ; Mehrez, Mohamed W ; Daoud, Mohamed A ; Hussein, Ahmed ; Jeon, Soo ; Melek, William</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-4523551ca39be4af6dd2155453c42f66777d5786f2dd49c83b068219cf3620353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Extended Kalman filter</topic><topic>Intelligent vehicles</topic><topic>Localization</topic><topic>Multisensor fusion</topic><topic>Optimization</topic><topic>Outliers (statistics)</topic><topic>Robots</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Osman, Mostafa</creatorcontrib><creatorcontrib>Mehrez, Mohamed W</creatorcontrib><creatorcontrib>Daoud, Mohamed A</creatorcontrib><creatorcontrib>Hussein, Ahmed</creatorcontrib><creatorcontrib>Jeon, Soo</creatorcontrib><creatorcontrib>Melek, William</creatorcontrib><collection>SAGE Open Access</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Transactions of the Institute of Measurement and Control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Osman, Mostafa</au><au>Mehrez, Mohamed W</au><au>Daoud, Mohamed A</au><au>Hussein, Ahmed</au><au>Jeon, Soo</au><au>Melek, William</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A generic multi-sensor fusion scheme for localization of autonomous platforms using moving horizon estimation</atitle><jtitle>Transactions of the Institute of Measurement and Control</jtitle><date>2021-11</date><risdate>2021</risdate><volume>43</volume><issue>15</issue><spage>3413</spage><epage>3427</epage><pages>3413-3427</pages><issn>0142-3312</issn><eissn>1477-0369</eissn><abstract>In this paper, a generic multi-sensor fusion framework is developed for the localization of intelligent vehicles and mobile robots. The localization framework is based on moving horizon estimation (MHE). Unlike the commonly used probabilistic filtering algorithms – for example, extended Kalman filter (EKF) and unscented Kalman filter (UKF) – MHE relies on solving successive least squares optimization problems over the innovation of multiple sensors’ measurements and a specific estimation horizon. In this paper, we present an efficient and generic multi-sensor fusion scheme, based on MHE. The proposed multi-sensor fusion scheme is capable of operating with different sensors’ rates, missing measurements, and outliers. Moreover, the proposed scheme is based on a multi-threading architecture to reduce its computational cost, making it more feasible for practical applications. The MHE fusion method is tested using simulated data as well as real experimental data sequences from an intelligent vehicle and a mobile robot combining measurements from different sensors to get accurate localization results. The performance of MHE is compared against that of UKF, where the MHE estimation results show superior performance.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/01423312211011454</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-6070-0610</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0142-3312
ispartof Transactions of the Institute of Measurement and Control, 2021-11, Vol.43 (15), p.3413-3427
issn 0142-3312
1477-0369
language eng
recordid cdi_proquest_journals_2575793214
source SAGE Journals
subjects Algorithms
Extended Kalman filter
Intelligent vehicles
Localization
Multisensor fusion
Optimization
Outliers (statistics)
Robots
Sensors
title A generic multi-sensor fusion scheme for localization of autonomous platforms using moving horizon estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A14%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20generic%20multi-sensor%20fusion%20scheme%20for%20localization%20of%20autonomous%20platforms%20using%20moving%20horizon%20estimation&rft.jtitle=Transactions%20of%20the%20Institute%20of%20Measurement%20and%20Control&rft.au=Osman,%20Mostafa&rft.date=2021-11&rft.volume=43&rft.issue=15&rft.spage=3413&rft.epage=3427&rft.pages=3413-3427&rft.issn=0142-3312&rft.eissn=1477-0369&rft_id=info:doi/10.1177/01423312211011454&rft_dat=%3Cproquest_cross%3E2575793214%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2575793214&rft_id=info:pmid/&rft_sage_id=10.1177_01423312211011454&rfr_iscdi=true