A generic multi-sensor fusion scheme for localization of autonomous platforms using moving horizon estimation
In this paper, a generic multi-sensor fusion framework is developed for the localization of intelligent vehicles and mobile robots. The localization framework is based on moving horizon estimation (MHE). Unlike the commonly used probabilistic filtering algorithms – for example, extended Kalman filte...
Gespeichert in:
Veröffentlicht in: | Transactions of the Institute of Measurement and Control 2021-11, Vol.43 (15), p.3413-3427 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3427 |
---|---|
container_issue | 15 |
container_start_page | 3413 |
container_title | Transactions of the Institute of Measurement and Control |
container_volume | 43 |
creator | Osman, Mostafa Mehrez, Mohamed W Daoud, Mohamed A Hussein, Ahmed Jeon, Soo Melek, William |
description | In this paper, a generic multi-sensor fusion framework is developed for the localization of intelligent vehicles and mobile robots. The localization framework is based on moving horizon estimation (MHE). Unlike the commonly used probabilistic filtering algorithms – for example, extended Kalman filter (EKF) and unscented Kalman filter (UKF) – MHE relies on solving successive least squares optimization problems over the innovation of multiple sensors’ measurements and a specific estimation horizon. In this paper, we present an efficient and generic multi-sensor fusion scheme, based on MHE. The proposed multi-sensor fusion scheme is capable of operating with different sensors’ rates, missing measurements, and outliers. Moreover, the proposed scheme is based on a multi-threading architecture to reduce its computational cost, making it more feasible for practical applications. The MHE fusion method is tested using simulated data as well as real experimental data sequences from an intelligent vehicle and a mobile robot combining measurements from different sensors to get accurate localization results. The performance of MHE is compared against that of UKF, where the MHE estimation results show superior performance. |
doi_str_mv | 10.1177/01423312211011454 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2575793214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_01423312211011454</sage_id><sourcerecordid>2575793214</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-4523551ca39be4af6dd2155453c42f66777d5786f2dd49c83b068219cf3620353</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvA89ZMPrvHUtQKBS96XtJs0m7ZbGqyK9hfb9YKHsTTCzPPMzMMQrdAZgBK3RPglDGgFIAAcMHP0AS4UgVhsjxHk7FfjMAlukppTwjhXPIJ8gu8tZ2NjcF-aPumSLZLIWI3pCZ0OJmd9Ra7XGmD0W1z1P1YDw7roQ9d8GFI-NDqPiM-4Wx1W-zDxxi7EJtjhm3qG__tXaMLp9tkb35yit4eH16Xq2L98vS8XKwLw4ToCy5oTjCalRvLtZN1TUEILpjh1EmplKqFmktH65qXZs42RM4plMYxSQkTbIruTnMPMbwPeX-1D0Ps8sqKCiVUySjwTMGJMjGkFK2rDjEfGj8rINX41erPV7MzOzlJb-3v1P-FL9T5d70</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2575793214</pqid></control><display><type>article</type><title>A generic multi-sensor fusion scheme for localization of autonomous platforms using moving horizon estimation</title><source>SAGE Journals</source><creator>Osman, Mostafa ; Mehrez, Mohamed W ; Daoud, Mohamed A ; Hussein, Ahmed ; Jeon, Soo ; Melek, William</creator><creatorcontrib>Osman, Mostafa ; Mehrez, Mohamed W ; Daoud, Mohamed A ; Hussein, Ahmed ; Jeon, Soo ; Melek, William</creatorcontrib><description>In this paper, a generic multi-sensor fusion framework is developed for the localization of intelligent vehicles and mobile robots. The localization framework is based on moving horizon estimation (MHE). Unlike the commonly used probabilistic filtering algorithms – for example, extended Kalman filter (EKF) and unscented Kalman filter (UKF) – MHE relies on solving successive least squares optimization problems over the innovation of multiple sensors’ measurements and a specific estimation horizon. In this paper, we present an efficient and generic multi-sensor fusion scheme, based on MHE. The proposed multi-sensor fusion scheme is capable of operating with different sensors’ rates, missing measurements, and outliers. Moreover, the proposed scheme is based on a multi-threading architecture to reduce its computational cost, making it more feasible for practical applications. The MHE fusion method is tested using simulated data as well as real experimental data sequences from an intelligent vehicle and a mobile robot combining measurements from different sensors to get accurate localization results. The performance of MHE is compared against that of UKF, where the MHE estimation results show superior performance.</description><identifier>ISSN: 0142-3312</identifier><identifier>EISSN: 1477-0369</identifier><identifier>DOI: 10.1177/01423312211011454</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Algorithms ; Extended Kalman filter ; Intelligent vehicles ; Localization ; Multisensor fusion ; Optimization ; Outliers (statistics) ; Robots ; Sensors</subject><ispartof>Transactions of the Institute of Measurement and Control, 2021-11, Vol.43 (15), p.3413-3427</ispartof><rights>The Author(s) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-4523551ca39be4af6dd2155453c42f66777d5786f2dd49c83b068219cf3620353</citedby><cites>FETCH-LOGICAL-c355t-4523551ca39be4af6dd2155453c42f66777d5786f2dd49c83b068219cf3620353</cites><orcidid>0000-0002-6070-0610</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/01423312211011454$$EPDF$$P50$$Gsage$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/01423312211011454$$EHTML$$P50$$Gsage$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Osman, Mostafa</creatorcontrib><creatorcontrib>Mehrez, Mohamed W</creatorcontrib><creatorcontrib>Daoud, Mohamed A</creatorcontrib><creatorcontrib>Hussein, Ahmed</creatorcontrib><creatorcontrib>Jeon, Soo</creatorcontrib><creatorcontrib>Melek, William</creatorcontrib><title>A generic multi-sensor fusion scheme for localization of autonomous platforms using moving horizon estimation</title><title>Transactions of the Institute of Measurement and Control</title><description>In this paper, a generic multi-sensor fusion framework is developed for the localization of intelligent vehicles and mobile robots. The localization framework is based on moving horizon estimation (MHE). Unlike the commonly used probabilistic filtering algorithms – for example, extended Kalman filter (EKF) and unscented Kalman filter (UKF) – MHE relies on solving successive least squares optimization problems over the innovation of multiple sensors’ measurements and a specific estimation horizon. In this paper, we present an efficient and generic multi-sensor fusion scheme, based on MHE. The proposed multi-sensor fusion scheme is capable of operating with different sensors’ rates, missing measurements, and outliers. Moreover, the proposed scheme is based on a multi-threading architecture to reduce its computational cost, making it more feasible for practical applications. The MHE fusion method is tested using simulated data as well as real experimental data sequences from an intelligent vehicle and a mobile robot combining measurements from different sensors to get accurate localization results. The performance of MHE is compared against that of UKF, where the MHE estimation results show superior performance.</description><subject>Algorithms</subject><subject>Extended Kalman filter</subject><subject>Intelligent vehicles</subject><subject>Localization</subject><subject>Multisensor fusion</subject><subject>Optimization</subject><subject>Outliers (statistics)</subject><subject>Robots</subject><subject>Sensors</subject><issn>0142-3312</issn><issn>1477-0369</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wFvA89ZMPrvHUtQKBS96XtJs0m7ZbGqyK9hfb9YKHsTTCzPPMzMMQrdAZgBK3RPglDGgFIAAcMHP0AS4UgVhsjxHk7FfjMAlukppTwjhXPIJ8gu8tZ2NjcF-aPumSLZLIWI3pCZ0OJmd9Ra7XGmD0W1z1P1YDw7roQ9d8GFI-NDqPiM-4Wx1W-zDxxi7EJtjhm3qG__tXaMLp9tkb35yit4eH16Xq2L98vS8XKwLw4ToCy5oTjCalRvLtZN1TUEILpjh1EmplKqFmktH65qXZs42RM4plMYxSQkTbIruTnMPMbwPeX-1D0Ps8sqKCiVUySjwTMGJMjGkFK2rDjEfGj8rINX41erPV7MzOzlJb-3v1P-FL9T5d70</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Osman, Mostafa</creator><creator>Mehrez, Mohamed W</creator><creator>Daoud, Mohamed A</creator><creator>Hussein, Ahmed</creator><creator>Jeon, Soo</creator><creator>Melek, William</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>AFRWT</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6070-0610</orcidid></search><sort><creationdate>202111</creationdate><title>A generic multi-sensor fusion scheme for localization of autonomous platforms using moving horizon estimation</title><author>Osman, Mostafa ; Mehrez, Mohamed W ; Daoud, Mohamed A ; Hussein, Ahmed ; Jeon, Soo ; Melek, William</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-4523551ca39be4af6dd2155453c42f66777d5786f2dd49c83b068219cf3620353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Extended Kalman filter</topic><topic>Intelligent vehicles</topic><topic>Localization</topic><topic>Multisensor fusion</topic><topic>Optimization</topic><topic>Outliers (statistics)</topic><topic>Robots</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Osman, Mostafa</creatorcontrib><creatorcontrib>Mehrez, Mohamed W</creatorcontrib><creatorcontrib>Daoud, Mohamed A</creatorcontrib><creatorcontrib>Hussein, Ahmed</creatorcontrib><creatorcontrib>Jeon, Soo</creatorcontrib><creatorcontrib>Melek, William</creatorcontrib><collection>SAGE Open Access</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Transactions of the Institute of Measurement and Control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Osman, Mostafa</au><au>Mehrez, Mohamed W</au><au>Daoud, Mohamed A</au><au>Hussein, Ahmed</au><au>Jeon, Soo</au><au>Melek, William</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A generic multi-sensor fusion scheme for localization of autonomous platforms using moving horizon estimation</atitle><jtitle>Transactions of the Institute of Measurement and Control</jtitle><date>2021-11</date><risdate>2021</risdate><volume>43</volume><issue>15</issue><spage>3413</spage><epage>3427</epage><pages>3413-3427</pages><issn>0142-3312</issn><eissn>1477-0369</eissn><abstract>In this paper, a generic multi-sensor fusion framework is developed for the localization of intelligent vehicles and mobile robots. The localization framework is based on moving horizon estimation (MHE). Unlike the commonly used probabilistic filtering algorithms – for example, extended Kalman filter (EKF) and unscented Kalman filter (UKF) – MHE relies on solving successive least squares optimization problems over the innovation of multiple sensors’ measurements and a specific estimation horizon. In this paper, we present an efficient and generic multi-sensor fusion scheme, based on MHE. The proposed multi-sensor fusion scheme is capable of operating with different sensors’ rates, missing measurements, and outliers. Moreover, the proposed scheme is based on a multi-threading architecture to reduce its computational cost, making it more feasible for practical applications. The MHE fusion method is tested using simulated data as well as real experimental data sequences from an intelligent vehicle and a mobile robot combining measurements from different sensors to get accurate localization results. The performance of MHE is compared against that of UKF, where the MHE estimation results show superior performance.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/01423312211011454</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-6070-0610</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-3312 |
ispartof | Transactions of the Institute of Measurement and Control, 2021-11, Vol.43 (15), p.3413-3427 |
issn | 0142-3312 1477-0369 |
language | eng |
recordid | cdi_proquest_journals_2575793214 |
source | SAGE Journals |
subjects | Algorithms Extended Kalman filter Intelligent vehicles Localization Multisensor fusion Optimization Outliers (statistics) Robots Sensors |
title | A generic multi-sensor fusion scheme for localization of autonomous platforms using moving horizon estimation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A14%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20generic%20multi-sensor%20fusion%20scheme%20for%20localization%20of%20autonomous%20platforms%20using%20moving%20horizon%20estimation&rft.jtitle=Transactions%20of%20the%20Institute%20of%20Measurement%20and%20Control&rft.au=Osman,%20Mostafa&rft.date=2021-11&rft.volume=43&rft.issue=15&rft.spage=3413&rft.epage=3427&rft.pages=3413-3427&rft.issn=0142-3312&rft.eissn=1477-0369&rft_id=info:doi/10.1177/01423312211011454&rft_dat=%3Cproquest_cross%3E2575793214%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2575793214&rft_id=info:pmid/&rft_sage_id=10.1177_01423312211011454&rfr_iscdi=true |