Control of Pneumatic Artificial Muscles with SNN-based Cerebellar-like Model
Soft robotics technologies have gained growing interest in recent years, which allows various applications from manufacturing to human-robot interaction. Pneumatic artificial muscle (PAM), a typical soft actuator, has been widely applied to soft robots. The compliance and resilience of soft actuator...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-09 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Zhang, Hongbo Li, Yunshuang Guo, Yipin Chen, Xinyi Ren, Qinyuan |
description | Soft robotics technologies have gained growing interest in recent years, which allows various applications from manufacturing to human-robot interaction. Pneumatic artificial muscle (PAM), a typical soft actuator, has been widely applied to soft robots. The compliance and resilience of soft actuators allow soft robots to behave compliant when interacting with unstructured environments, while the utilization of soft actuators also introduces nonlinearity and uncertainty. Inspired by Cerebellum's vital functions in control of human's physical movement, a neural network model of Cerebellum based on spiking neuron networks (SNNs) is designed. This model is used as a feed-forward controller in controlling a 1-DOF robot arm driven by PAMs. The simulation results show that this Cerebellar-based system achieves good performance and increases the system's response. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2575659409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2575659409</sourcerecordid><originalsourceid>FETCH-proquest_journals_25756594093</originalsourceid><addsrcrecordid>eNqNyk8LgjAYgPERBEn5HQadB2s6zWNI0SElqLtMfaXZm6v9oa9fhz5Ap-fwe2YkEkmyYdtUiAWJnRs55yLLhZRJRE6lmbw1SM1AzxOEh_K6ozvr9aA7rZBWwXUIjr61v9FLXbNWOehpCRZaQFSWob4DrUwPuCLzQaGD-NclWR_21_LInta8AjjfjCbY6UuNkLnMZJHyIvnv-gAKdzz0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2575659409</pqid></control><display><type>article</type><title>Control of Pneumatic Artificial Muscles with SNN-based Cerebellar-like Model</title><source>Free E- Journals</source><creator>Zhang, Hongbo ; Li, Yunshuang ; Guo, Yipin ; Chen, Xinyi ; Ren, Qinyuan</creator><creatorcontrib>Zhang, Hongbo ; Li, Yunshuang ; Guo, Yipin ; Chen, Xinyi ; Ren, Qinyuan</creatorcontrib><description>Soft robotics technologies have gained growing interest in recent years, which allows various applications from manufacturing to human-robot interaction. Pneumatic artificial muscle (PAM), a typical soft actuator, has been widely applied to soft robots. The compliance and resilience of soft actuators allow soft robots to behave compliant when interacting with unstructured environments, while the utilization of soft actuators also introduces nonlinearity and uncertainty. Inspired by Cerebellum's vital functions in control of human's physical movement, a neural network model of Cerebellum based on spiking neuron networks (SNNs) is designed. This model is used as a feed-forward controller in controlling a 1-DOF robot arm driven by PAMs. The simulation results show that this Cerebellar-based system achieves good performance and increases the system's response.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Actuators ; Artificial muscles ; Automation ; Cerebellum ; Feedforward control ; Human engineering ; Human motion ; Manufacturing engineering ; Neural networks ; Robot arms ; Soft robotics</subject><ispartof>arXiv.org, 2021-09</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Zhang, Hongbo</creatorcontrib><creatorcontrib>Li, Yunshuang</creatorcontrib><creatorcontrib>Guo, Yipin</creatorcontrib><creatorcontrib>Chen, Xinyi</creatorcontrib><creatorcontrib>Ren, Qinyuan</creatorcontrib><title>Control of Pneumatic Artificial Muscles with SNN-based Cerebellar-like Model</title><title>arXiv.org</title><description>Soft robotics technologies have gained growing interest in recent years, which allows various applications from manufacturing to human-robot interaction. Pneumatic artificial muscle (PAM), a typical soft actuator, has been widely applied to soft robots. The compliance and resilience of soft actuators allow soft robots to behave compliant when interacting with unstructured environments, while the utilization of soft actuators also introduces nonlinearity and uncertainty. Inspired by Cerebellum's vital functions in control of human's physical movement, a neural network model of Cerebellum based on spiking neuron networks (SNNs) is designed. This model is used as a feed-forward controller in controlling a 1-DOF robot arm driven by PAMs. The simulation results show that this Cerebellar-based system achieves good performance and increases the system's response.</description><subject>Actuators</subject><subject>Artificial muscles</subject><subject>Automation</subject><subject>Cerebellum</subject><subject>Feedforward control</subject><subject>Human engineering</subject><subject>Human motion</subject><subject>Manufacturing engineering</subject><subject>Neural networks</subject><subject>Robot arms</subject><subject>Soft robotics</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyk8LgjAYgPERBEn5HQadB2s6zWNI0SElqLtMfaXZm6v9oa9fhz5Ap-fwe2YkEkmyYdtUiAWJnRs55yLLhZRJRE6lmbw1SM1AzxOEh_K6ozvr9aA7rZBWwXUIjr61v9FLXbNWOehpCRZaQFSWob4DrUwPuCLzQaGD-NclWR_21_LInta8AjjfjCbY6UuNkLnMZJHyIvnv-gAKdzz0</recordid><startdate>20210922</startdate><enddate>20210922</enddate><creator>Zhang, Hongbo</creator><creator>Li, Yunshuang</creator><creator>Guo, Yipin</creator><creator>Chen, Xinyi</creator><creator>Ren, Qinyuan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210922</creationdate><title>Control of Pneumatic Artificial Muscles with SNN-based Cerebellar-like Model</title><author>Zhang, Hongbo ; Li, Yunshuang ; Guo, Yipin ; Chen, Xinyi ; Ren, Qinyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25756594093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Actuators</topic><topic>Artificial muscles</topic><topic>Automation</topic><topic>Cerebellum</topic><topic>Feedforward control</topic><topic>Human engineering</topic><topic>Human motion</topic><topic>Manufacturing engineering</topic><topic>Neural networks</topic><topic>Robot arms</topic><topic>Soft robotics</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Hongbo</creatorcontrib><creatorcontrib>Li, Yunshuang</creatorcontrib><creatorcontrib>Guo, Yipin</creatorcontrib><creatorcontrib>Chen, Xinyi</creatorcontrib><creatorcontrib>Ren, Qinyuan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Hongbo</au><au>Li, Yunshuang</au><au>Guo, Yipin</au><au>Chen, Xinyi</au><au>Ren, Qinyuan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Control of Pneumatic Artificial Muscles with SNN-based Cerebellar-like Model</atitle><jtitle>arXiv.org</jtitle><date>2021-09-22</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Soft robotics technologies have gained growing interest in recent years, which allows various applications from manufacturing to human-robot interaction. Pneumatic artificial muscle (PAM), a typical soft actuator, has been widely applied to soft robots. The compliance and resilience of soft actuators allow soft robots to behave compliant when interacting with unstructured environments, while the utilization of soft actuators also introduces nonlinearity and uncertainty. Inspired by Cerebellum's vital functions in control of human's physical movement, a neural network model of Cerebellum based on spiking neuron networks (SNNs) is designed. This model is used as a feed-forward controller in controlling a 1-DOF robot arm driven by PAMs. The simulation results show that this Cerebellar-based system achieves good performance and increases the system's response.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2575659409 |
source | Free E- Journals |
subjects | Actuators Artificial muscles Automation Cerebellum Feedforward control Human engineering Human motion Manufacturing engineering Neural networks Robot arms Soft robotics |
title | Control of Pneumatic Artificial Muscles with SNN-based Cerebellar-like Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T10%3A13%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Control%20of%20Pneumatic%20Artificial%20Muscles%20with%20SNN-based%20Cerebellar-like%20Model&rft.jtitle=arXiv.org&rft.au=Zhang,%20Hongbo&rft.date=2021-09-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2575659409%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2575659409&rft_id=info:pmid/&rfr_iscdi=true |