Geomechanical model and wellbore stability analysis utilizing acoustic impedance and reflection coefficient in a carbonate reservoir

One of the most important oil and gas drilling studies is wellbore stability analysis. The purpose of this research is to investigate wellbore stability from a different perspective. To begin, vertical stress and pore pressure were calculated. The lowest and maximum horizontal stress were calculated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Petroleum Exploration and Production Technology 2021-11, Vol.11 (11), p.3935-3961
Hauptverfasser: Bagheri, Hassan, Tanha, Abbas Ayatizadeh, Doulati Ardejani, Faramarz, Heydari-Tajareh, Mojtaba, Larki, Ehsan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3961
container_issue 11
container_start_page 3935
container_title Journal of Petroleum Exploration and Production Technology
container_volume 11
creator Bagheri, Hassan
Tanha, Abbas Ayatizadeh
Doulati Ardejani, Faramarz
Heydari-Tajareh, Mojtaba
Larki, Ehsan
description One of the most important oil and gas drilling studies is wellbore stability analysis. The purpose of this research is to investigate wellbore stability from a different perspective. To begin, vertical stress and pore pressure were calculated. The lowest and maximum horizontal stress were calculated using poroelastic equations. The strike-slip to normal fault regime was shown by calculated in situ stress values. The 1-D geomechanical model was utilized to investigate the failure mechanisms and safe mud window estimation using the Mohr–Coulomb failure criterion. Using density and sonic (compressional and shear slowness) logs, the acoustic impedance (AI) and reflection coefficient (RC) logs were determined subsequently. The combination of layers with different AI indicates positive and negative values for the RC, zones prone to shear failure or breakout, and the mud weight in these zones should be increased, according to the interpretation of the AI and RC readings and the results of the geomechanical model. Furthermore, the zones with almost constant values of AI log and values close to zero for RC log are stable as homogeneously lithologically, but have a lower tensile failure threshold than the intervals that are sensitive to shear failure, and if the mud weight increases, these zones are susceptible to tensile failure or breakdown. Increased porosity values, which directly correspond with the shear failure threshold and inversely with the tensile failure threshold, cause AI values to decrease in homogenous zones, but have no effect on the behavior of the RC log. This approach can determine the potential zones to kick, loss, shear failure, and tensile failure in a short time.
doi_str_mv 10.1007/s13202-021-01291-2
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2575655833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A676610194</galeid><sourcerecordid>A676610194</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-1551e9e6b4bcaae06f441ea27ca76ec3653911e2854a36911bb8f6c5105f51cd3</originalsourceid><addsrcrecordid>eNp9kU9vFDEMxUcVSK1KvwCnSFwZyJ9JZudYVdAiVeIC58jJeqZB2WSJM6DlzAcndCp642TL-j3Lz6_rXgv-TnA-viehJJc9l6LnQk6il2fdhRQT77k25sW_Xu_Ouyui4PggBz5OUl10v28xH9A_QAoeIjvkPUYGac9-YowuF2RUwYUY6qmNIZ4oEFtrG_wKaWHg80o1eBYOR9xD8vgoLjhH9DXkxHzGeQ4-YKosJAbMQ3E5QcVGEZYfOZRX3csZIuHVU73svn788OXmrr__fPvp5vq-98Ooai-0FjihcYPzAMjNPAwCQY4eRoNeGa0mIVDu9ADKtNa53Wy8FlzPWvi9uuzebHuPJX9fkar9ltfSXJGVetSmfUipRr3dqAUiWrdSSNi-ligsD5UWWInstRmNEVxMQ8PlhvuSiZpzeyzhAOVkBbd_87FbPrblYx_zsbKJ1CaiBqcFy_Ml_1H9Af4YlXY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2575655833</pqid></control><display><type>article</type><title>Geomechanical model and wellbore stability analysis utilizing acoustic impedance and reflection coefficient in a carbonate reservoir</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Free Full-Text Journals in Chemistry</source><source>SpringerLink Journals - AutoHoldings</source><creator>Bagheri, Hassan ; Tanha, Abbas Ayatizadeh ; Doulati Ardejani, Faramarz ; Heydari-Tajareh, Mojtaba ; Larki, Ehsan</creator><creatorcontrib>Bagheri, Hassan ; Tanha, Abbas Ayatizadeh ; Doulati Ardejani, Faramarz ; Heydari-Tajareh, Mojtaba ; Larki, Ehsan</creatorcontrib><description>One of the most important oil and gas drilling studies is wellbore stability analysis. The purpose of this research is to investigate wellbore stability from a different perspective. To begin, vertical stress and pore pressure were calculated. The lowest and maximum horizontal stress were calculated using poroelastic equations. The strike-slip to normal fault regime was shown by calculated in situ stress values. The 1-D geomechanical model was utilized to investigate the failure mechanisms and safe mud window estimation using the Mohr–Coulomb failure criterion. Using density and sonic (compressional and shear slowness) logs, the acoustic impedance (AI) and reflection coefficient (RC) logs were determined subsequently. The combination of layers with different AI indicates positive and negative values for the RC, zones prone to shear failure or breakout, and the mud weight in these zones should be increased, according to the interpretation of the AI and RC readings and the results of the geomechanical model. Furthermore, the zones with almost constant values of AI log and values close to zero for RC log are stable as homogeneously lithologically, but have a lower tensile failure threshold than the intervals that are sensitive to shear failure, and if the mud weight increases, these zones are susceptible to tensile failure or breakdown. Increased porosity values, which directly correspond with the shear failure threshold and inversely with the tensile failure threshold, cause AI values to decrease in homogenous zones, but have no effect on the behavior of the RC log. This approach can determine the potential zones to kick, loss, shear failure, and tensile failure in a short time.</description><identifier>ISSN: 2190-0558</identifier><identifier>EISSN: 2190-0566</identifier><identifier>DOI: 10.1007/s13202-021-01291-2</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Acoustic impedance ; Acoustics ; Carbonates ; Drilling ; Earth and Environmental Science ; Earth Sciences ; Energy Systems ; Failure ; Failure mechanisms ; Geology ; Geomechanics ; Impedance ; Industrial and Production Engineering ; Industrial Chemistry/Chemical Engineering ; Mechanical properties ; Mohr-Coulomb theory ; Monitoring/Environmental Analysis ; Mud ; Offshore Engineering ; Oil well drilling ; Original Paper-Exploration Engineering ; Petroleum engineering ; Pore pressure ; Pore water pressure ; Porosity ; Reflectance ; Reflection ; Shear ; Stability ; Stability analysis ; Weight</subject><ispartof>Journal of Petroleum Exploration and Production Technology, 2021-11, Vol.11 (11), p.3935-3961</ispartof><rights>The Author(s) 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-1551e9e6b4bcaae06f441ea27ca76ec3653911e2854a36911bb8f6c5105f51cd3</citedby><cites>FETCH-LOGICAL-c473t-1551e9e6b4bcaae06f441ea27ca76ec3653911e2854a36911bb8f6c5105f51cd3</cites><orcidid>0000-0002-5623-4899</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13202-021-01291-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1007/s13202-021-01291-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,27903,27904,41099,41467,42168,42536,51297,51554</link.rule.ids></links><search><creatorcontrib>Bagheri, Hassan</creatorcontrib><creatorcontrib>Tanha, Abbas Ayatizadeh</creatorcontrib><creatorcontrib>Doulati Ardejani, Faramarz</creatorcontrib><creatorcontrib>Heydari-Tajareh, Mojtaba</creatorcontrib><creatorcontrib>Larki, Ehsan</creatorcontrib><title>Geomechanical model and wellbore stability analysis utilizing acoustic impedance and reflection coefficient in a carbonate reservoir</title><title>Journal of Petroleum Exploration and Production Technology</title><addtitle>J Petrol Explor Prod Technol</addtitle><description>One of the most important oil and gas drilling studies is wellbore stability analysis. The purpose of this research is to investigate wellbore stability from a different perspective. To begin, vertical stress and pore pressure were calculated. The lowest and maximum horizontal stress were calculated using poroelastic equations. The strike-slip to normal fault regime was shown by calculated in situ stress values. The 1-D geomechanical model was utilized to investigate the failure mechanisms and safe mud window estimation using the Mohr–Coulomb failure criterion. Using density and sonic (compressional and shear slowness) logs, the acoustic impedance (AI) and reflection coefficient (RC) logs were determined subsequently. The combination of layers with different AI indicates positive and negative values for the RC, zones prone to shear failure or breakout, and the mud weight in these zones should be increased, according to the interpretation of the AI and RC readings and the results of the geomechanical model. Furthermore, the zones with almost constant values of AI log and values close to zero for RC log are stable as homogeneously lithologically, but have a lower tensile failure threshold than the intervals that are sensitive to shear failure, and if the mud weight increases, these zones are susceptible to tensile failure or breakdown. Increased porosity values, which directly correspond with the shear failure threshold and inversely with the tensile failure threshold, cause AI values to decrease in homogenous zones, but have no effect on the behavior of the RC log. This approach can determine the potential zones to kick, loss, shear failure, and tensile failure in a short time.</description><subject>Acoustic impedance</subject><subject>Acoustics</subject><subject>Carbonates</subject><subject>Drilling</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Energy Systems</subject><subject>Failure</subject><subject>Failure mechanisms</subject><subject>Geology</subject><subject>Geomechanics</subject><subject>Impedance</subject><subject>Industrial and Production Engineering</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Mechanical properties</subject><subject>Mohr-Coulomb theory</subject><subject>Monitoring/Environmental Analysis</subject><subject>Mud</subject><subject>Offshore Engineering</subject><subject>Oil well drilling</subject><subject>Original Paper-Exploration Engineering</subject><subject>Petroleum engineering</subject><subject>Pore pressure</subject><subject>Pore water pressure</subject><subject>Porosity</subject><subject>Reflectance</subject><subject>Reflection</subject><subject>Shear</subject><subject>Stability</subject><subject>Stability analysis</subject><subject>Weight</subject><issn>2190-0558</issn><issn>2190-0566</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>N95</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kU9vFDEMxUcVSK1KvwCnSFwZyJ9JZudYVdAiVeIC58jJeqZB2WSJM6DlzAcndCp642TL-j3Lz6_rXgv-TnA-viehJJc9l6LnQk6il2fdhRQT77k25sW_Xu_Ouyui4PggBz5OUl10v28xH9A_QAoeIjvkPUYGac9-YowuF2RUwYUY6qmNIZ4oEFtrG_wKaWHg80o1eBYOR9xD8vgoLjhH9DXkxHzGeQ4-YKosJAbMQ3E5QcVGEZYfOZRX3csZIuHVU73svn788OXmrr__fPvp5vq-98Ooai-0FjihcYPzAMjNPAwCQY4eRoNeGa0mIVDu9ADKtNa53Wy8FlzPWvi9uuzebHuPJX9fkar9ltfSXJGVetSmfUipRr3dqAUiWrdSSNi-ligsD5UWWInstRmNEVxMQ8PlhvuSiZpzeyzhAOVkBbd_87FbPrblYx_zsbKJ1CaiBqcFy_Ml_1H9Af4YlXY</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Bagheri, Hassan</creator><creator>Tanha, Abbas Ayatizadeh</creator><creator>Doulati Ardejani, Faramarz</creator><creator>Heydari-Tajareh, Mojtaba</creator><creator>Larki, Ehsan</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>3V.</scope><scope>7TN</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>H96</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KR7</scope><scope>L.-</scope><scope>L.G</scope><scope>L6V</scope><scope>M0C</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-5623-4899</orcidid></search><sort><creationdate>20211101</creationdate><title>Geomechanical model and wellbore stability analysis utilizing acoustic impedance and reflection coefficient in a carbonate reservoir</title><author>Bagheri, Hassan ; Tanha, Abbas Ayatizadeh ; Doulati Ardejani, Faramarz ; Heydari-Tajareh, Mojtaba ; Larki, Ehsan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-1551e9e6b4bcaae06f441ea27ca76ec3653911e2854a36911bb8f6c5105f51cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acoustic impedance</topic><topic>Acoustics</topic><topic>Carbonates</topic><topic>Drilling</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Energy Systems</topic><topic>Failure</topic><topic>Failure mechanisms</topic><topic>Geology</topic><topic>Geomechanics</topic><topic>Impedance</topic><topic>Industrial and Production Engineering</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Mechanical properties</topic><topic>Mohr-Coulomb theory</topic><topic>Monitoring/Environmental Analysis</topic><topic>Mud</topic><topic>Offshore Engineering</topic><topic>Oil well drilling</topic><topic>Original Paper-Exploration Engineering</topic><topic>Petroleum engineering</topic><topic>Pore pressure</topic><topic>Pore water pressure</topic><topic>Porosity</topic><topic>Reflectance</topic><topic>Reflection</topic><topic>Shear</topic><topic>Stability</topic><topic>Stability analysis</topic><topic>Weight</topic><toplevel>online_resources</toplevel><creatorcontrib>Bagheri, Hassan</creatorcontrib><creatorcontrib>Tanha, Abbas Ayatizadeh</creatorcontrib><creatorcontrib>Doulati Ardejani, Faramarz</creatorcontrib><creatorcontrib>Heydari-Tajareh, Mojtaba</creatorcontrib><creatorcontrib>Larki, Ehsan</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of Petroleum Exploration and Production Technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bagheri, Hassan</au><au>Tanha, Abbas Ayatizadeh</au><au>Doulati Ardejani, Faramarz</au><au>Heydari-Tajareh, Mojtaba</au><au>Larki, Ehsan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geomechanical model and wellbore stability analysis utilizing acoustic impedance and reflection coefficient in a carbonate reservoir</atitle><jtitle>Journal of Petroleum Exploration and Production Technology</jtitle><stitle>J Petrol Explor Prod Technol</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>11</volume><issue>11</issue><spage>3935</spage><epage>3961</epage><pages>3935-3961</pages><issn>2190-0558</issn><eissn>2190-0566</eissn><abstract>One of the most important oil and gas drilling studies is wellbore stability analysis. The purpose of this research is to investigate wellbore stability from a different perspective. To begin, vertical stress and pore pressure were calculated. The lowest and maximum horizontal stress were calculated using poroelastic equations. The strike-slip to normal fault regime was shown by calculated in situ stress values. The 1-D geomechanical model was utilized to investigate the failure mechanisms and safe mud window estimation using the Mohr–Coulomb failure criterion. Using density and sonic (compressional and shear slowness) logs, the acoustic impedance (AI) and reflection coefficient (RC) logs were determined subsequently. The combination of layers with different AI indicates positive and negative values for the RC, zones prone to shear failure or breakout, and the mud weight in these zones should be increased, according to the interpretation of the AI and RC readings and the results of the geomechanical model. Furthermore, the zones with almost constant values of AI log and values close to zero for RC log are stable as homogeneously lithologically, but have a lower tensile failure threshold than the intervals that are sensitive to shear failure, and if the mud weight increases, these zones are susceptible to tensile failure or breakdown. Increased porosity values, which directly correspond with the shear failure threshold and inversely with the tensile failure threshold, cause AI values to decrease in homogenous zones, but have no effect on the behavior of the RC log. This approach can determine the potential zones to kick, loss, shear failure, and tensile failure in a short time.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s13202-021-01291-2</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0002-5623-4899</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2190-0558
ispartof Journal of Petroleum Exploration and Production Technology, 2021-11, Vol.11 (11), p.3935-3961
issn 2190-0558
2190-0566
language eng
recordid cdi_proquest_journals_2575655833
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Free Full-Text Journals in Chemistry; SpringerLink Journals - AutoHoldings
subjects Acoustic impedance
Acoustics
Carbonates
Drilling
Earth and Environmental Science
Earth Sciences
Energy Systems
Failure
Failure mechanisms
Geology
Geomechanics
Impedance
Industrial and Production Engineering
Industrial Chemistry/Chemical Engineering
Mechanical properties
Mohr-Coulomb theory
Monitoring/Environmental Analysis
Mud
Offshore Engineering
Oil well drilling
Original Paper-Exploration Engineering
Petroleum engineering
Pore pressure
Pore water pressure
Porosity
Reflectance
Reflection
Shear
Stability
Stability analysis
Weight
title Geomechanical model and wellbore stability analysis utilizing acoustic impedance and reflection coefficient in a carbonate reservoir
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T22%3A57%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geomechanical%20model%20and%20wellbore%20stability%20analysis%20utilizing%20acoustic%20impedance%20and%20reflection%20coefficient%20in%20a%20carbonate%20reservoir&rft.jtitle=Journal%20of%20Petroleum%20Exploration%20and%20Production%20Technology&rft.au=Bagheri,%20Hassan&rft.date=2021-11-01&rft.volume=11&rft.issue=11&rft.spage=3935&rft.epage=3961&rft.pages=3935-3961&rft.issn=2190-0558&rft.eissn=2190-0566&rft_id=info:doi/10.1007/s13202-021-01291-2&rft_dat=%3Cgale_proqu%3EA676610194%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2575655833&rft_id=info:pmid/&rft_galeid=A676610194&rfr_iscdi=true