Lattice-matched AlInN/GaN multi-channel heterostructure and HEMTs with low on-resistance

In this paper, a high-performance multi-channel heterostructure based on lattice-matched AlInN/GaN has been reported. The stacking of five heterostructures yields a high two-dimensional electron gas density of 3.67 × 1013 cm−2 and a small sheet resistance (RSH) of 74.5 Ω/sq. Compared with the AlGaN/...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2021-09, Vol.119 (12), Article 122104
Hauptverfasser: Li, Ang, Wang, Chong, Xu, Shengrui, Zheng, Xuefeng, He, Yunlong, Ma, Xiaohua, Lu, Xiaoli, Zhang, Jinfeng, Liu, Kai, Zhao, Yaopeng, Hao, Yue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page
container_title Applied physics letters
container_volume 119
creator Li, Ang
Wang, Chong
Xu, Shengrui
Zheng, Xuefeng
He, Yunlong
Ma, Xiaohua
Lu, Xiaoli
Zhang, Jinfeng
Liu, Kai
Zhao, Yaopeng
Hao, Yue
description In this paper, a high-performance multi-channel heterostructure based on lattice-matched AlInN/GaN has been reported. The stacking of five heterostructures yields a high two-dimensional electron gas density of 3.67 × 1013 cm−2 and a small sheet resistance (RSH) of 74.5 Ω/sq. Compared with the AlGaN/GaN sample with the same number of heterojunctions, the AlInN/GaN sample reduces the RSH by 51.2%. Since the AlInN barrier and GaN channel are lattice-matched, the strain defects caused by piezoelectric strain can be alleviated. The high-resolution x-ray diffraction results show that the total dislocation density in AlInN/GaN multi-channels is reduced by 18.9%. The calculation models of multiple-channel heterostructures are obtained to investigate the electron population and energy band diagram, and the calculated results are roughly consistent with the experimental results. With a gate–drain spacing of 11.5 μm, the on-resistance (RON) of the AlInN/GaN multi-channel HEMT was only 2.26 Ω mm, indicating that the lattice-matched multi-channel AlInN/GaN heterostructure can substantially enhance the current drive efficiency and improve the output performance of the devices.
doi_str_mv 10.1063/5.0063638
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2575616438</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2575616438</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-35b8ea7edcc4e3af7bc3e79fd3db5a6bc0148fb834a314cf6116964ed6f1426e3</originalsourceid><addsrcrecordid>eNqN0M9LwzAUB_AgCs7pwf-g4EmlW9L8aHccY05hzouCt5KmL6yjS2aSOvzvzajoSfH0ePB5L3lfhC4JHhEs6JiPcCyCFkdoQHCep5SQ4hgNMMY0FRNOTtGZ95vY8ozSAXpdyhAaBelWBrWGOpm2D2Y1XshVsu3a0KRqLY2BNllDAGd9cJ0KnYNEmjq5nz8--2TfhHXS2n1iTerANz5Io-AcnWjZerj4qkP0cjd_nt2ny6fFw2y6TBXN8pBSXhUgc6iVYkClzitFIZ_omtYVl6JSmLBCVwVlkhKmtCBETASDWmjCMgF0iK76vTtn3zrwodzYzpn4ZJnxnAsiGC2iuu6Vijd4B7rcuWYr3UdJcHkIruTlV3DRFr3dQ2W1Vw3Ec759TC7njAtG8CHEWRNkaKyZ2c6EOHr7_9Gob3odYb_lz1_9it-t-4Hlrtb0E56rnOQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2575616438</pqid></control><display><type>article</type><title>Lattice-matched AlInN/GaN multi-channel heterostructure and HEMTs with low on-resistance</title><source>AIP Journals Complete</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Alma/SFX Local Collection</source><creator>Li, Ang ; Wang, Chong ; Xu, Shengrui ; Zheng, Xuefeng ; He, Yunlong ; Ma, Xiaohua ; Lu, Xiaoli ; Zhang, Jinfeng ; Liu, Kai ; Zhao, Yaopeng ; Hao, Yue</creator><creatorcontrib>Li, Ang ; Wang, Chong ; Xu, Shengrui ; Zheng, Xuefeng ; He, Yunlong ; Ma, Xiaohua ; Lu, Xiaoli ; Zhang, Jinfeng ; Liu, Kai ; Zhao, Yaopeng ; Hao, Yue</creatorcontrib><description>In this paper, a high-performance multi-channel heterostructure based on lattice-matched AlInN/GaN has been reported. The stacking of five heterostructures yields a high two-dimensional electron gas density of 3.67 × 1013 cm−2 and a small sheet resistance (RSH) of 74.5 Ω/sq. Compared with the AlGaN/GaN sample with the same number of heterojunctions, the AlInN/GaN sample reduces the RSH by 51.2%. Since the AlInN barrier and GaN channel are lattice-matched, the strain defects caused by piezoelectric strain can be alleviated. The high-resolution x-ray diffraction results show that the total dislocation density in AlInN/GaN multi-channels is reduced by 18.9%. The calculation models of multiple-channel heterostructures are obtained to investigate the electron population and energy band diagram, and the calculated results are roughly consistent with the experimental results. With a gate–drain spacing of 11.5 μm, the on-resistance (RON) of the AlInN/GaN multi-channel HEMT was only 2.26 Ω mm, indicating that the lattice-matched multi-channel AlInN/GaN heterostructure can substantially enhance the current drive efficiency and improve the output performance of the devices.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0063638</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>MELVILLE: AIP Publishing</publisher><subject>Aluminum gallium nitrides ; Applied physics ; Dislocation density ; Electron gas ; Energy bands ; Gallium nitrides ; Gas density ; Heterojunctions ; Heterostructures ; Lattice matching ; Physical Sciences ; Physics ; Physics, Applied ; Piezoelectricity ; Science &amp; Technology</subject><ispartof>Applied physics letters, 2021-09, Vol.119 (12), Article 122104</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>15</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000754564100005</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c327t-35b8ea7edcc4e3af7bc3e79fd3db5a6bc0148fb834a314cf6116964ed6f1426e3</citedby><cites>FETCH-LOGICAL-c327t-35b8ea7edcc4e3af7bc3e79fd3db5a6bc0148fb834a314cf6116964ed6f1426e3</cites><orcidid>0000-0003-2002-2461 ; 0000-0002-6189-8913 ; 0000-0002-7706-6644 ; 0000-0002-9410-3849 ; 0000-0002-7258-9315</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0063638$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>315,781,785,795,4513,27929,27930,39263,76389</link.rule.ids></links><search><creatorcontrib>Li, Ang</creatorcontrib><creatorcontrib>Wang, Chong</creatorcontrib><creatorcontrib>Xu, Shengrui</creatorcontrib><creatorcontrib>Zheng, Xuefeng</creatorcontrib><creatorcontrib>He, Yunlong</creatorcontrib><creatorcontrib>Ma, Xiaohua</creatorcontrib><creatorcontrib>Lu, Xiaoli</creatorcontrib><creatorcontrib>Zhang, Jinfeng</creatorcontrib><creatorcontrib>Liu, Kai</creatorcontrib><creatorcontrib>Zhao, Yaopeng</creatorcontrib><creatorcontrib>Hao, Yue</creatorcontrib><title>Lattice-matched AlInN/GaN multi-channel heterostructure and HEMTs with low on-resistance</title><title>Applied physics letters</title><addtitle>APPL PHYS LETT</addtitle><description>In this paper, a high-performance multi-channel heterostructure based on lattice-matched AlInN/GaN has been reported. The stacking of five heterostructures yields a high two-dimensional electron gas density of 3.67 × 1013 cm−2 and a small sheet resistance (RSH) of 74.5 Ω/sq. Compared with the AlGaN/GaN sample with the same number of heterojunctions, the AlInN/GaN sample reduces the RSH by 51.2%. Since the AlInN barrier and GaN channel are lattice-matched, the strain defects caused by piezoelectric strain can be alleviated. The high-resolution x-ray diffraction results show that the total dislocation density in AlInN/GaN multi-channels is reduced by 18.9%. The calculation models of multiple-channel heterostructures are obtained to investigate the electron population and energy band diagram, and the calculated results are roughly consistent with the experimental results. With a gate–drain spacing of 11.5 μm, the on-resistance (RON) of the AlInN/GaN multi-channel HEMT was only 2.26 Ω mm, indicating that the lattice-matched multi-channel AlInN/GaN heterostructure can substantially enhance the current drive efficiency and improve the output performance of the devices.</description><subject>Aluminum gallium nitrides</subject><subject>Applied physics</subject><subject>Dislocation density</subject><subject>Electron gas</subject><subject>Energy bands</subject><subject>Gallium nitrides</subject><subject>Gas density</subject><subject>Heterojunctions</subject><subject>Heterostructures</subject><subject>Lattice matching</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Piezoelectricity</subject><subject>Science &amp; Technology</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqN0M9LwzAUB_AgCs7pwf-g4EmlW9L8aHccY05hzouCt5KmL6yjS2aSOvzvzajoSfH0ePB5L3lfhC4JHhEs6JiPcCyCFkdoQHCep5SQ4hgNMMY0FRNOTtGZ95vY8ozSAXpdyhAaBelWBrWGOpm2D2Y1XshVsu3a0KRqLY2BNllDAGd9cJ0KnYNEmjq5nz8--2TfhHXS2n1iTerANz5Io-AcnWjZerj4qkP0cjd_nt2ny6fFw2y6TBXN8pBSXhUgc6iVYkClzitFIZ_omtYVl6JSmLBCVwVlkhKmtCBETASDWmjCMgF0iK76vTtn3zrwodzYzpn4ZJnxnAsiGC2iuu6Vijd4B7rcuWYr3UdJcHkIruTlV3DRFr3dQ2W1Vw3Ec759TC7njAtG8CHEWRNkaKyZ2c6EOHr7_9Gob3odYb_lz1_9it-t-4Hlrtb0E56rnOQ</recordid><startdate>20210920</startdate><enddate>20210920</enddate><creator>Li, Ang</creator><creator>Wang, Chong</creator><creator>Xu, Shengrui</creator><creator>Zheng, Xuefeng</creator><creator>He, Yunlong</creator><creator>Ma, Xiaohua</creator><creator>Lu, Xiaoli</creator><creator>Zhang, Jinfeng</creator><creator>Liu, Kai</creator><creator>Zhao, Yaopeng</creator><creator>Hao, Yue</creator><general>AIP Publishing</general><general>American Institute of Physics</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2002-2461</orcidid><orcidid>https://orcid.org/0000-0002-6189-8913</orcidid><orcidid>https://orcid.org/0000-0002-7706-6644</orcidid><orcidid>https://orcid.org/0000-0002-9410-3849</orcidid><orcidid>https://orcid.org/0000-0002-7258-9315</orcidid></search><sort><creationdate>20210920</creationdate><title>Lattice-matched AlInN/GaN multi-channel heterostructure and HEMTs with low on-resistance</title><author>Li, Ang ; Wang, Chong ; Xu, Shengrui ; Zheng, Xuefeng ; He, Yunlong ; Ma, Xiaohua ; Lu, Xiaoli ; Zhang, Jinfeng ; Liu, Kai ; Zhao, Yaopeng ; Hao, Yue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-35b8ea7edcc4e3af7bc3e79fd3db5a6bc0148fb834a314cf6116964ed6f1426e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminum gallium nitrides</topic><topic>Applied physics</topic><topic>Dislocation density</topic><topic>Electron gas</topic><topic>Energy bands</topic><topic>Gallium nitrides</topic><topic>Gas density</topic><topic>Heterojunctions</topic><topic>Heterostructures</topic><topic>Lattice matching</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Piezoelectricity</topic><topic>Science &amp; Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Ang</creatorcontrib><creatorcontrib>Wang, Chong</creatorcontrib><creatorcontrib>Xu, Shengrui</creatorcontrib><creatorcontrib>Zheng, Xuefeng</creatorcontrib><creatorcontrib>He, Yunlong</creatorcontrib><creatorcontrib>Ma, Xiaohua</creatorcontrib><creatorcontrib>Lu, Xiaoli</creatorcontrib><creatorcontrib>Zhang, Jinfeng</creatorcontrib><creatorcontrib>Liu, Kai</creatorcontrib><creatorcontrib>Zhao, Yaopeng</creatorcontrib><creatorcontrib>Hao, Yue</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Ang</au><au>Wang, Chong</au><au>Xu, Shengrui</au><au>Zheng, Xuefeng</au><au>He, Yunlong</au><au>Ma, Xiaohua</au><au>Lu, Xiaoli</au><au>Zhang, Jinfeng</au><au>Liu, Kai</au><au>Zhao, Yaopeng</au><au>Hao, Yue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lattice-matched AlInN/GaN multi-channel heterostructure and HEMTs with low on-resistance</atitle><jtitle>Applied physics letters</jtitle><stitle>APPL PHYS LETT</stitle><date>2021-09-20</date><risdate>2021</risdate><volume>119</volume><issue>12</issue><artnum>122104</artnum><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>In this paper, a high-performance multi-channel heterostructure based on lattice-matched AlInN/GaN has been reported. The stacking of five heterostructures yields a high two-dimensional electron gas density of 3.67 × 1013 cm−2 and a small sheet resistance (RSH) of 74.5 Ω/sq. Compared with the AlGaN/GaN sample with the same number of heterojunctions, the AlInN/GaN sample reduces the RSH by 51.2%. Since the AlInN barrier and GaN channel are lattice-matched, the strain defects caused by piezoelectric strain can be alleviated. The high-resolution x-ray diffraction results show that the total dislocation density in AlInN/GaN multi-channels is reduced by 18.9%. The calculation models of multiple-channel heterostructures are obtained to investigate the electron population and energy band diagram, and the calculated results are roughly consistent with the experimental results. With a gate–drain spacing of 11.5 μm, the on-resistance (RON) of the AlInN/GaN multi-channel HEMT was only 2.26 Ω mm, indicating that the lattice-matched multi-channel AlInN/GaN heterostructure can substantially enhance the current drive efficiency and improve the output performance of the devices.</abstract><cop>MELVILLE</cop><pub>AIP Publishing</pub><doi>10.1063/5.0063638</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-2002-2461</orcidid><orcidid>https://orcid.org/0000-0002-6189-8913</orcidid><orcidid>https://orcid.org/0000-0002-7706-6644</orcidid><orcidid>https://orcid.org/0000-0002-9410-3849</orcidid><orcidid>https://orcid.org/0000-0002-7258-9315</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2021-09, Vol.119 (12), Article 122104
issn 0003-6951
1077-3118
language eng
recordid cdi_proquest_journals_2575616438
source AIP Journals Complete; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection
subjects Aluminum gallium nitrides
Applied physics
Dislocation density
Electron gas
Energy bands
Gallium nitrides
Gas density
Heterojunctions
Heterostructures
Lattice matching
Physical Sciences
Physics
Physics, Applied
Piezoelectricity
Science & Technology
title Lattice-matched AlInN/GaN multi-channel heterostructure and HEMTs with low on-resistance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T00%3A01%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lattice-matched%20AlInN/GaN%20multi-channel%20heterostructure%20and%20HEMTs%20with%20low%20on-resistance&rft.jtitle=Applied%20physics%20letters&rft.au=Li,%20Ang&rft.date=2021-09-20&rft.volume=119&rft.issue=12&rft.artnum=122104&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0063638&rft_dat=%3Cproquest_cross%3E2575616438%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2575616438&rft_id=info:pmid/&rfr_iscdi=true