A blockchain-based decentralized machine learning framework for collaborative intrusion detection within UAVs

UAVs have numerous emerging applications in various domains of life. However, it is extremely challenging to gain the required level of public acceptance of UAVs without proving safety and security for human life. Conventional UAVs mostly depend upon the centralized server to perform data processing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer networks (Amsterdam, Netherlands : 1999) Netherlands : 1999), 2021-09, Vol.196, p.108217, Article 108217
Hauptverfasser: Khan, Ammar Ahmed, Khan, Muhammad Mubashir, Khan, Kashif Mehboob, Arshad, Junaid, Ahmad, Farhan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 108217
container_title Computer networks (Amsterdam, Netherlands : 1999)
container_volume 196
creator Khan, Ammar Ahmed
Khan, Muhammad Mubashir
Khan, Kashif Mehboob
Arshad, Junaid
Ahmad, Farhan
description UAVs have numerous emerging applications in various domains of life. However, it is extremely challenging to gain the required level of public acceptance of UAVs without proving safety and security for human life. Conventional UAVs mostly depend upon the centralized server to perform data processing with complex machine learning algorithms. In fact, all the conventional cyber attacks are applicable on the transmission and storage of data in UAVs. While their impact is extremely serious because UAVs are highly dependent on smart systems that extensively utilize machine learning techniques in order to take decisions in human absence. In this regard, we propose to enhance the performance of UAVs with a decentralized machine learning framework based on blockchain. The proposed framework has the potential to significantly enhance the integrity and storage of data for intelligent decision making among multiple UAVs. We present the use of blockchain to achieve decentralized predictive analytics and present a framework that can successfully apply and share machine learning models in a decentralized manner. We evaluate our system using collaborative intrusion detection as a case-study in order to highlight the feasibility and effectiveness of using blockchain based decentralized machine learning approach in UAVs and other similar applications.
doi_str_mv 10.1016/j.comnet.2021.108217
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2575535013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1389128621002644</els_id><sourcerecordid>2575535013</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-bb13b43ae9a01a966f3e1b0b392123e27ed2de9da16c950c15cf68f450549c703</originalsourceid><addsrcrecordid>eNp9UMtOwzAQjBBIlMIfcLDEOcWPOIkvSFXFS6rEhXK1bGdD3SZ2sdNW8PW4CmdOO7uamdVMlt0SPCOYlPebmfG9g2FGMSXpVFNSnWUTUlc0r3ApzhNmtcgJrcvL7CrGDca4KGg9yfo50p03W7NW1uVaRWhQAwbcEFRnf9LWK7O2DlAHKjjrPlEbVA9HH7ao9QEZ33VK-6AGewBkk24frXfJZAAznNDRDskAreYf8Tq7aFUX4eZvTrPV0-P74iVfvj2_LubL3LAaD7nWhOmCKRAKEyXKsmVANNZMUEIZ0Aoa2oBoFCmN4NgQbtqybguOeSFMhdk0uxt9d8F_7SEOcuP3waWXkvKKc8YxYYlVjCwTfIwBWrkLtlfhWxIsT8XKjRyLladi5Vhskj2MMkgJDhaCjMaCM9DYkCLLxtv_DX4BynCE9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2575535013</pqid></control><display><type>article</type><title>A blockchain-based decentralized machine learning framework for collaborative intrusion detection within UAVs</title><source>Access via ScienceDirect (Elsevier)</source><creator>Khan, Ammar Ahmed ; Khan, Muhammad Mubashir ; Khan, Kashif Mehboob ; Arshad, Junaid ; Ahmad, Farhan</creator><creatorcontrib>Khan, Ammar Ahmed ; Khan, Muhammad Mubashir ; Khan, Kashif Mehboob ; Arshad, Junaid ; Ahmad, Farhan</creatorcontrib><description>UAVs have numerous emerging applications in various domains of life. However, it is extremely challenging to gain the required level of public acceptance of UAVs without proving safety and security for human life. Conventional UAVs mostly depend upon the centralized server to perform data processing with complex machine learning algorithms. In fact, all the conventional cyber attacks are applicable on the transmission and storage of data in UAVs. While their impact is extremely serious because UAVs are highly dependent on smart systems that extensively utilize machine learning techniques in order to take decisions in human absence. In this regard, we propose to enhance the performance of UAVs with a decentralized machine learning framework based on blockchain. The proposed framework has the potential to significantly enhance the integrity and storage of data for intelligent decision making among multiple UAVs. We present the use of blockchain to achieve decentralized predictive analytics and present a framework that can successfully apply and share machine learning models in a decentralized manner. We evaluate our system using collaborative intrusion detection as a case-study in order to highlight the feasibility and effectiveness of using blockchain based decentralized machine learning approach in UAVs and other similar applications.</description><identifier>ISSN: 1389-1286</identifier><identifier>EISSN: 1872-7069</identifier><identifier>DOI: 10.1016/j.comnet.2021.108217</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Blockchain ; Collaboration ; Collaborative intrusion detection ; Cryptography ; Cybersecurity ; Data processing ; Decentralized machine learning ; Decision making ; Intrusion detection systems ; Machine learning ; UAV ; Unmanned aerial vehicles</subject><ispartof>Computer networks (Amsterdam, Netherlands : 1999), 2021-09, Vol.196, p.108217, Article 108217</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Sep 4, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-bb13b43ae9a01a966f3e1b0b392123e27ed2de9da16c950c15cf68f450549c703</citedby><cites>FETCH-LOGICAL-c380t-bb13b43ae9a01a966f3e1b0b392123e27ed2de9da16c950c15cf68f450549c703</cites><orcidid>0000-0003-0424-9498 ; 0000-0002-0011-9525</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.comnet.2021.108217$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Khan, Ammar Ahmed</creatorcontrib><creatorcontrib>Khan, Muhammad Mubashir</creatorcontrib><creatorcontrib>Khan, Kashif Mehboob</creatorcontrib><creatorcontrib>Arshad, Junaid</creatorcontrib><creatorcontrib>Ahmad, Farhan</creatorcontrib><title>A blockchain-based decentralized machine learning framework for collaborative intrusion detection within UAVs</title><title>Computer networks (Amsterdam, Netherlands : 1999)</title><description>UAVs have numerous emerging applications in various domains of life. However, it is extremely challenging to gain the required level of public acceptance of UAVs without proving safety and security for human life. Conventional UAVs mostly depend upon the centralized server to perform data processing with complex machine learning algorithms. In fact, all the conventional cyber attacks are applicable on the transmission and storage of data in UAVs. While their impact is extremely serious because UAVs are highly dependent on smart systems that extensively utilize machine learning techniques in order to take decisions in human absence. In this regard, we propose to enhance the performance of UAVs with a decentralized machine learning framework based on blockchain. The proposed framework has the potential to significantly enhance the integrity and storage of data for intelligent decision making among multiple UAVs. We present the use of blockchain to achieve decentralized predictive analytics and present a framework that can successfully apply and share machine learning models in a decentralized manner. We evaluate our system using collaborative intrusion detection as a case-study in order to highlight the feasibility and effectiveness of using blockchain based decentralized machine learning approach in UAVs and other similar applications.</description><subject>Algorithms</subject><subject>Blockchain</subject><subject>Collaboration</subject><subject>Collaborative intrusion detection</subject><subject>Cryptography</subject><subject>Cybersecurity</subject><subject>Data processing</subject><subject>Decentralized machine learning</subject><subject>Decision making</subject><subject>Intrusion detection systems</subject><subject>Machine learning</subject><subject>UAV</subject><subject>Unmanned aerial vehicles</subject><issn>1389-1286</issn><issn>1872-7069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQjBBIlMIfcLDEOcWPOIkvSFXFS6rEhXK1bGdD3SZ2sdNW8PW4CmdOO7uamdVMlt0SPCOYlPebmfG9g2FGMSXpVFNSnWUTUlc0r3ApzhNmtcgJrcvL7CrGDca4KGg9yfo50p03W7NW1uVaRWhQAwbcEFRnf9LWK7O2DlAHKjjrPlEbVA9HH7ao9QEZ33VK-6AGewBkk24frXfJZAAznNDRDskAreYf8Tq7aFUX4eZvTrPV0-P74iVfvj2_LubL3LAaD7nWhOmCKRAKEyXKsmVANNZMUEIZ0Aoa2oBoFCmN4NgQbtqybguOeSFMhdk0uxt9d8F_7SEOcuP3waWXkvKKc8YxYYlVjCwTfIwBWrkLtlfhWxIsT8XKjRyLladi5Vhskj2MMkgJDhaCjMaCM9DYkCLLxtv_DX4BynCE9g</recordid><startdate>20210904</startdate><enddate>20210904</enddate><creator>Khan, Ammar Ahmed</creator><creator>Khan, Muhammad Mubashir</creator><creator>Khan, Kashif Mehboob</creator><creator>Arshad, Junaid</creator><creator>Ahmad, Farhan</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0424-9498</orcidid><orcidid>https://orcid.org/0000-0002-0011-9525</orcidid></search><sort><creationdate>20210904</creationdate><title>A blockchain-based decentralized machine learning framework for collaborative intrusion detection within UAVs</title><author>Khan, Ammar Ahmed ; Khan, Muhammad Mubashir ; Khan, Kashif Mehboob ; Arshad, Junaid ; Ahmad, Farhan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-bb13b43ae9a01a966f3e1b0b392123e27ed2de9da16c950c15cf68f450549c703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Blockchain</topic><topic>Collaboration</topic><topic>Collaborative intrusion detection</topic><topic>Cryptography</topic><topic>Cybersecurity</topic><topic>Data processing</topic><topic>Decentralized machine learning</topic><topic>Decision making</topic><topic>Intrusion detection systems</topic><topic>Machine learning</topic><topic>UAV</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Ammar Ahmed</creatorcontrib><creatorcontrib>Khan, Muhammad Mubashir</creatorcontrib><creatorcontrib>Khan, Kashif Mehboob</creatorcontrib><creatorcontrib>Arshad, Junaid</creatorcontrib><creatorcontrib>Ahmad, Farhan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer networks (Amsterdam, Netherlands : 1999)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Ammar Ahmed</au><au>Khan, Muhammad Mubashir</au><au>Khan, Kashif Mehboob</au><au>Arshad, Junaid</au><au>Ahmad, Farhan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A blockchain-based decentralized machine learning framework for collaborative intrusion detection within UAVs</atitle><jtitle>Computer networks (Amsterdam, Netherlands : 1999)</jtitle><date>2021-09-04</date><risdate>2021</risdate><volume>196</volume><spage>108217</spage><pages>108217-</pages><artnum>108217</artnum><issn>1389-1286</issn><eissn>1872-7069</eissn><abstract>UAVs have numerous emerging applications in various domains of life. However, it is extremely challenging to gain the required level of public acceptance of UAVs without proving safety and security for human life. Conventional UAVs mostly depend upon the centralized server to perform data processing with complex machine learning algorithms. In fact, all the conventional cyber attacks are applicable on the transmission and storage of data in UAVs. While their impact is extremely serious because UAVs are highly dependent on smart systems that extensively utilize machine learning techniques in order to take decisions in human absence. In this regard, we propose to enhance the performance of UAVs with a decentralized machine learning framework based on blockchain. The proposed framework has the potential to significantly enhance the integrity and storage of data for intelligent decision making among multiple UAVs. We present the use of blockchain to achieve decentralized predictive analytics and present a framework that can successfully apply and share machine learning models in a decentralized manner. We evaluate our system using collaborative intrusion detection as a case-study in order to highlight the feasibility and effectiveness of using blockchain based decentralized machine learning approach in UAVs and other similar applications.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.comnet.2021.108217</doi><orcidid>https://orcid.org/0000-0003-0424-9498</orcidid><orcidid>https://orcid.org/0000-0002-0011-9525</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1389-1286
ispartof Computer networks (Amsterdam, Netherlands : 1999), 2021-09, Vol.196, p.108217, Article 108217
issn 1389-1286
1872-7069
language eng
recordid cdi_proquest_journals_2575535013
source Access via ScienceDirect (Elsevier)
subjects Algorithms
Blockchain
Collaboration
Collaborative intrusion detection
Cryptography
Cybersecurity
Data processing
Decentralized machine learning
Decision making
Intrusion detection systems
Machine learning
UAV
Unmanned aerial vehicles
title A blockchain-based decentralized machine learning framework for collaborative intrusion detection within UAVs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T01%3A55%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20blockchain-based%20decentralized%20machine%20learning%20framework%20for%20collaborative%20intrusion%20detection%20within%20UAVs&rft.jtitle=Computer%20networks%20(Amsterdam,%20Netherlands%20:%201999)&rft.au=Khan,%20Ammar%20Ahmed&rft.date=2021-09-04&rft.volume=196&rft.spage=108217&rft.pages=108217-&rft.artnum=108217&rft.issn=1389-1286&rft.eissn=1872-7069&rft_id=info:doi/10.1016/j.comnet.2021.108217&rft_dat=%3Cproquest_cross%3E2575535013%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2575535013&rft_id=info:pmid/&rft_els_id=S1389128621002644&rfr_iscdi=true