Edge rotation from momentum transport by neutrals
Due to their high cross field mobility, neutral atoms can have a strong effect on transport even at the low relative densities found inside the separatrix. We use a charge-exchange dominated model for the neutrals, coupled to neoclassical ions, to calculate momentum transport when it is dominated by...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Due to their high cross field mobility, neutral atoms can have a strong effect on transport even at the low relative densities found inside the separatrix. We use a charge-exchange dominated model for the neutrals, coupled to neoclassical ions, to calculate momentum transport when it is dominated by the neutrals. We can then calculate self-consistently the radial electric field and predict the intrinsic rotation in an otherwise torque-free plasma. Using a numerical solver for the ion distribution to allow arbitrary collisionality, we investigate the effects of inverse aspect ratio and elongation on plasma rotation. We also calculate the rotation of a trace carbon impurity, to facilitate future comparison to experiments using charge exchange recombination spectroscopy diagnostics. |
---|---|
ISSN: | 1742-6588 1742-6596 1742-6596 |
DOI: | 10.1088/1742-6596/775/1/012011 |