Some Generalizations of the Shadow Problem in the Lobachevsky Space
We consider the problem of shadow in the Lobachevsky space. This problem can be treated as the problem of finding conditions guaranteeing that points belong to the generalized convex hull of a family of sets. We determine the limit values of the parameters for which the same configurations of balls...
Gespeichert in:
Veröffentlicht in: | Ukrainian mathematical journal 2021-06, Vol.73 (1), p.67-75 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 75 |
---|---|
container_issue | 1 |
container_start_page | 67 |
container_title | Ukrainian mathematical journal |
container_volume | 73 |
creator | Kostin, A.V. |
description | We consider the problem of shadow in the Lobachevsky space. This problem can be treated as the problem of finding conditions guaranteeing that points belong to the generalized convex hull of a family of sets. We determine the limit values of the parameters for which the same configurations of balls guarantee that a point belongs to the generalized convex hull of balls in the Euclidean and hyperbolic spaces. Parallel with families of balls, we consider families of horoballs, as well as certain combinations of balls and horoballs. |
doi_str_mv | 10.1007/s11253-021-01908-z |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2575490802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A730944583</galeid><sourcerecordid>A730944583</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-19610e1f08cedca0560c51c7ba6cc4c9d3ae7a023e302fb16b1820759aada8d3</originalsourceid><addsrcrecordid>eNp9kNFLwzAQxoMoOKf_gE8Fn6OXpmmaxzF0CgOF7T2k6XXr7JqZdMr21xtXwTe5h4Pj-9199xFyy-CeAciHwFgqOIWUUWAKCno8IyMmJKeKy_ycjAAyRoVS4pJchbABiFghR2S6cFtMZtihN21zNH3jupC4OunXmCzWpnJfyZt3ZYvbpOlO07krjV3jZ3g_JIudsXhNLmrTBrz57WOyfHpcTp_p_HX2Mp3MqeWgespUzgBZDYXFyhoQOVjBrCxNbm1mVcUNSgMpRw5pXbK8ZEUKUihjKlNUfEzuhrU77z72GHq9cXvfxYs6FVJk8e0Ij8n9oFqZFnXT1a73xsaqcNtY12HdxPlERktZJgoegXQArHcheKz1zjdb4w-agf4JVw_h6hiuPoWrjxHiAxSiuFuh__PyD_UN9ch8Ww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2575490802</pqid></control><display><type>article</type><title>Some Generalizations of the Shadow Problem in the Lobachevsky Space</title><source>SpringerLink Journals</source><creator>Kostin, A.V.</creator><creatorcontrib>Kostin, A.V.</creatorcontrib><description>We consider the problem of shadow in the Lobachevsky space. This problem can be treated as the problem of finding conditions guaranteeing that points belong to the generalized convex hull of a family of sets. We determine the limit values of the parameters for which the same configurations of balls guarantee that a point belongs to the generalized convex hull of balls in the Euclidean and hyperbolic spaces. Parallel with families of balls, we consider families of horoballs, as well as certain combinations of balls and horoballs.</description><identifier>ISSN: 0041-5995</identifier><identifier>EISSN: 1573-9376</identifier><identifier>DOI: 10.1007/s11253-021-01908-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Analysis ; Applications of Mathematics ; Convexity ; Geometry ; Mathematics ; Mathematics and Statistics ; Shadows ; Statistics</subject><ispartof>Ukrainian mathematical journal, 2021-06, Vol.73 (1), p.67-75</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c309t-19610e1f08cedca0560c51c7ba6cc4c9d3ae7a023e302fb16b1820759aada8d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11253-021-01908-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11253-021-01908-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kostin, A.V.</creatorcontrib><title>Some Generalizations of the Shadow Problem in the Lobachevsky Space</title><title>Ukrainian mathematical journal</title><addtitle>Ukr Math J</addtitle><description>We consider the problem of shadow in the Lobachevsky space. This problem can be treated as the problem of finding conditions guaranteeing that points belong to the generalized convex hull of a family of sets. We determine the limit values of the parameters for which the same configurations of balls guarantee that a point belongs to the generalized convex hull of balls in the Euclidean and hyperbolic spaces. Parallel with families of balls, we consider families of horoballs, as well as certain combinations of balls and horoballs.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Convexity</subject><subject>Geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Shadows</subject><subject>Statistics</subject><issn>0041-5995</issn><issn>1573-9376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kNFLwzAQxoMoOKf_gE8Fn6OXpmmaxzF0CgOF7T2k6XXr7JqZdMr21xtXwTe5h4Pj-9199xFyy-CeAciHwFgqOIWUUWAKCno8IyMmJKeKy_ycjAAyRoVS4pJchbABiFghR2S6cFtMZtihN21zNH3jupC4OunXmCzWpnJfyZt3ZYvbpOlO07krjV3jZ3g_JIudsXhNLmrTBrz57WOyfHpcTp_p_HX2Mp3MqeWgespUzgBZDYXFyhoQOVjBrCxNbm1mVcUNSgMpRw5pXbK8ZEUKUihjKlNUfEzuhrU77z72GHq9cXvfxYs6FVJk8e0Ij8n9oFqZFnXT1a73xsaqcNtY12HdxPlERktZJgoegXQArHcheKz1zjdb4w-agf4JVw_h6hiuPoWrjxHiAxSiuFuh__PyD_UN9ch8Ww</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Kostin, A.V.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210601</creationdate><title>Some Generalizations of the Shadow Problem in the Lobachevsky Space</title><author>Kostin, A.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-19610e1f08cedca0560c51c7ba6cc4c9d3ae7a023e302fb16b1820759aada8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Convexity</topic><topic>Geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Shadows</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kostin, A.V.</creatorcontrib><collection>CrossRef</collection><jtitle>Ukrainian mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kostin, A.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some Generalizations of the Shadow Problem in the Lobachevsky Space</atitle><jtitle>Ukrainian mathematical journal</jtitle><stitle>Ukr Math J</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>73</volume><issue>1</issue><spage>67</spage><epage>75</epage><pages>67-75</pages><issn>0041-5995</issn><eissn>1573-9376</eissn><abstract>We consider the problem of shadow in the Lobachevsky space. This problem can be treated as the problem of finding conditions guaranteeing that points belong to the generalized convex hull of a family of sets. We determine the limit values of the parameters for which the same configurations of balls guarantee that a point belongs to the generalized convex hull of balls in the Euclidean and hyperbolic spaces. Parallel with families of balls, we consider families of horoballs, as well as certain combinations of balls and horoballs.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11253-021-01908-z</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0041-5995 |
ispartof | Ukrainian mathematical journal, 2021-06, Vol.73 (1), p.67-75 |
issn | 0041-5995 1573-9376 |
language | eng |
recordid | cdi_proquest_journals_2575490802 |
source | SpringerLink Journals |
subjects | Algebra Analysis Applications of Mathematics Convexity Geometry Mathematics Mathematics and Statistics Shadows Statistics |
title | Some Generalizations of the Shadow Problem in the Lobachevsky Space |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T08%3A35%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20Generalizations%20of%20the%20Shadow%20Problem%20in%20the%20Lobachevsky%20Space&rft.jtitle=Ukrainian%20mathematical%20journal&rft.au=Kostin,%20A.V.&rft.date=2021-06-01&rft.volume=73&rft.issue=1&rft.spage=67&rft.epage=75&rft.pages=67-75&rft.issn=0041-5995&rft.eissn=1573-9376&rft_id=info:doi/10.1007/s11253-021-01908-z&rft_dat=%3Cgale_proqu%3EA730944583%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2575490802&rft_id=info:pmid/&rft_galeid=A730944583&rfr_iscdi=true |