Some Generalizations of the Shadow Problem in the Lobachevsky Space

We consider the problem of shadow in the Lobachevsky space. This problem can be treated as the problem of finding conditions guaranteeing that points belong to the generalized convex hull of a family of sets. We determine the limit values of the parameters for which the same configurations of balls...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ukrainian mathematical journal 2021-06, Vol.73 (1), p.67-75
1. Verfasser: Kostin, A.V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 75
container_issue 1
container_start_page 67
container_title Ukrainian mathematical journal
container_volume 73
creator Kostin, A.V.
description We consider the problem of shadow in the Lobachevsky space. This problem can be treated as the problem of finding conditions guaranteeing that points belong to the generalized convex hull of a family of sets. We determine the limit values of the parameters for which the same configurations of balls guarantee that a point belongs to the generalized convex hull of balls in the Euclidean and hyperbolic spaces. Parallel with families of balls, we consider families of horoballs, as well as certain combinations of balls and horoballs.
doi_str_mv 10.1007/s11253-021-01908-z
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2575490802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A730944583</galeid><sourcerecordid>A730944583</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-19610e1f08cedca0560c51c7ba6cc4c9d3ae7a023e302fb16b1820759aada8d3</originalsourceid><addsrcrecordid>eNp9kNFLwzAQxoMoOKf_gE8Fn6OXpmmaxzF0CgOF7T2k6XXr7JqZdMr21xtXwTe5h4Pj-9199xFyy-CeAciHwFgqOIWUUWAKCno8IyMmJKeKy_ycjAAyRoVS4pJchbABiFghR2S6cFtMZtihN21zNH3jupC4OunXmCzWpnJfyZt3ZYvbpOlO07krjV3jZ3g_JIudsXhNLmrTBrz57WOyfHpcTp_p_HX2Mp3MqeWgespUzgBZDYXFyhoQOVjBrCxNbm1mVcUNSgMpRw5pXbK8ZEUKUihjKlNUfEzuhrU77z72GHq9cXvfxYs6FVJk8e0Ij8n9oFqZFnXT1a73xsaqcNtY12HdxPlERktZJgoegXQArHcheKz1zjdb4w-agf4JVw_h6hiuPoWrjxHiAxSiuFuh__PyD_UN9ch8Ww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2575490802</pqid></control><display><type>article</type><title>Some Generalizations of the Shadow Problem in the Lobachevsky Space</title><source>SpringerLink Journals</source><creator>Kostin, A.V.</creator><creatorcontrib>Kostin, A.V.</creatorcontrib><description>We consider the problem of shadow in the Lobachevsky space. This problem can be treated as the problem of finding conditions guaranteeing that points belong to the generalized convex hull of a family of sets. We determine the limit values of the parameters for which the same configurations of balls guarantee that a point belongs to the generalized convex hull of balls in the Euclidean and hyperbolic spaces. Parallel with families of balls, we consider families of horoballs, as well as certain combinations of balls and horoballs.</description><identifier>ISSN: 0041-5995</identifier><identifier>EISSN: 1573-9376</identifier><identifier>DOI: 10.1007/s11253-021-01908-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Analysis ; Applications of Mathematics ; Convexity ; Geometry ; Mathematics ; Mathematics and Statistics ; Shadows ; Statistics</subject><ispartof>Ukrainian mathematical journal, 2021-06, Vol.73 (1), p.67-75</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c309t-19610e1f08cedca0560c51c7ba6cc4c9d3ae7a023e302fb16b1820759aada8d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11253-021-01908-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11253-021-01908-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kostin, A.V.</creatorcontrib><title>Some Generalizations of the Shadow Problem in the Lobachevsky Space</title><title>Ukrainian mathematical journal</title><addtitle>Ukr Math J</addtitle><description>We consider the problem of shadow in the Lobachevsky space. This problem can be treated as the problem of finding conditions guaranteeing that points belong to the generalized convex hull of a family of sets. We determine the limit values of the parameters for which the same configurations of balls guarantee that a point belongs to the generalized convex hull of balls in the Euclidean and hyperbolic spaces. Parallel with families of balls, we consider families of horoballs, as well as certain combinations of balls and horoballs.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Convexity</subject><subject>Geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Shadows</subject><subject>Statistics</subject><issn>0041-5995</issn><issn>1573-9376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kNFLwzAQxoMoOKf_gE8Fn6OXpmmaxzF0CgOF7T2k6XXr7JqZdMr21xtXwTe5h4Pj-9199xFyy-CeAciHwFgqOIWUUWAKCno8IyMmJKeKy_ycjAAyRoVS4pJchbABiFghR2S6cFtMZtihN21zNH3jupC4OunXmCzWpnJfyZt3ZYvbpOlO07krjV3jZ3g_JIudsXhNLmrTBrz57WOyfHpcTp_p_HX2Mp3MqeWgespUzgBZDYXFyhoQOVjBrCxNbm1mVcUNSgMpRw5pXbK8ZEUKUihjKlNUfEzuhrU77z72GHq9cXvfxYs6FVJk8e0Ij8n9oFqZFnXT1a73xsaqcNtY12HdxPlERktZJgoegXQArHcheKz1zjdb4w-agf4JVw_h6hiuPoWrjxHiAxSiuFuh__PyD_UN9ch8Ww</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Kostin, A.V.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210601</creationdate><title>Some Generalizations of the Shadow Problem in the Lobachevsky Space</title><author>Kostin, A.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-19610e1f08cedca0560c51c7ba6cc4c9d3ae7a023e302fb16b1820759aada8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Convexity</topic><topic>Geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Shadows</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kostin, A.V.</creatorcontrib><collection>CrossRef</collection><jtitle>Ukrainian mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kostin, A.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some Generalizations of the Shadow Problem in the Lobachevsky Space</atitle><jtitle>Ukrainian mathematical journal</jtitle><stitle>Ukr Math J</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>73</volume><issue>1</issue><spage>67</spage><epage>75</epage><pages>67-75</pages><issn>0041-5995</issn><eissn>1573-9376</eissn><abstract>We consider the problem of shadow in the Lobachevsky space. This problem can be treated as the problem of finding conditions guaranteeing that points belong to the generalized convex hull of a family of sets. We determine the limit values of the parameters for which the same configurations of balls guarantee that a point belongs to the generalized convex hull of balls in the Euclidean and hyperbolic spaces. Parallel with families of balls, we consider families of horoballs, as well as certain combinations of balls and horoballs.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11253-021-01908-z</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0041-5995
ispartof Ukrainian mathematical journal, 2021-06, Vol.73 (1), p.67-75
issn 0041-5995
1573-9376
language eng
recordid cdi_proquest_journals_2575490802
source SpringerLink Journals
subjects Algebra
Analysis
Applications of Mathematics
Convexity
Geometry
Mathematics
Mathematics and Statistics
Shadows
Statistics
title Some Generalizations of the Shadow Problem in the Lobachevsky Space
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T08%3A35%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20Generalizations%20of%20the%20Shadow%20Problem%20in%20the%20Lobachevsky%20Space&rft.jtitle=Ukrainian%20mathematical%20journal&rft.au=Kostin,%20A.V.&rft.date=2021-06-01&rft.volume=73&rft.issue=1&rft.spage=67&rft.epage=75&rft.pages=67-75&rft.issn=0041-5995&rft.eissn=1573-9376&rft_id=info:doi/10.1007/s11253-021-01908-z&rft_dat=%3Cgale_proqu%3EA730944583%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2575490802&rft_id=info:pmid/&rft_galeid=A730944583&rfr_iscdi=true