Gusts detection in a horizontal wind turbine by monitoring of innovations error of an extended Kalman filter
This paper presents a novel model-based detection scheme capable of detecting and diagnosing gusts. Detection is achieved by monitoring the innovations error (i.e., the difference between the estimated and measured outputs) of an extended discrete Kalman filter. It is designed to trigger a detection...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2016-09, Vol.753 (5), p.52010 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | 52010 |
container_title | Journal of physics. Conference series |
container_volume | 753 |
creator | Recalde, L F Hur, S Leithead, W E |
description | This paper presents a novel model-based detection scheme capable of detecting and diagnosing gusts. Detection is achieved by monitoring the innovations error (i.e., the difference between the estimated and measured outputs) of an extended discrete Kalman filter. It is designed to trigger a detection confirmation alarm in the presence of wind anomalies. Simulation results are presented to demonstrate that both operating and coherent extreme wind gusts can successfully be detected. The wind anomaly is identified in magnitude and shape through maximum likelihood ratio and goodness of fit, respectively. The detector is capable of isolating extreme wind gusts before the turbine over speeds. |
doi_str_mv | 10.1088/1742-6596/753/5/052010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2575228993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2575228993</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-7795902d79f40b8444b611fa3ca0cdcca592e56e0047b94fd1c7e04715d9f67b3</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhosoOKd_QQJeeTGbtE3TXMrQ-TFQUK9D2iSa0SU1SdX5602pTATB3OQk53nPgSdJjhE8Q7CqUkSKbFZiWqYE5ylOIc4ggjvJZNvY3dZVtZ8ceL-CMI-HTJJ20fvggZBBNkFbA7QBHLxYpz-tCbwF79oIEHpXayNBvQFra3SIbfMMrIq0sW98CHognbNu-OQGyI8gjZAC3PJ2Hd9Kt0G6w2RP8dbLo-97mjxdXjzOr2bLu8X1_Hw5a3KMw4wQiinMBKGqgHVVFEVdIqR43nDYiKbhmGYSlxLCgtS0UAI1RMYaYUFVSep8mpyMcztnX3vpA1vZ3pm4kmWY4CyrKM0jVY5U46z3TirWOb3mbsMQZINZNkhjg0AWzTLMRrMxeDoGte1-Jt_czx9-cawTKrLZH-w_C74A4gmJGQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2575228993</pqid></control><display><type>article</type><title>Gusts detection in a horizontal wind turbine by monitoring of innovations error of an extended Kalman filter</title><source>Institute of Physics IOPscience extra</source><source>Institute of Physics Open Access Journal Titles</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>Recalde, L F ; Hur, S ; Leithead, W E</creator><creatorcontrib>Recalde, L F ; Hur, S ; Leithead, W E</creatorcontrib><description>This paper presents a novel model-based detection scheme capable of detecting and diagnosing gusts. Detection is achieved by monitoring the innovations error (i.e., the difference between the estimated and measured outputs) of an extended discrete Kalman filter. It is designed to trigger a detection confirmation alarm in the presence of wind anomalies. Simulation results are presented to demonstrate that both operating and coherent extreme wind gusts can successfully be detected. The wind anomaly is identified in magnitude and shape through maximum likelihood ratio and goodness of fit, respectively. The detector is capable of isolating extreme wind gusts before the turbine over speeds.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/753/5/052010</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Anomalies ; Extended Kalman filter ; Goodness of fit ; Gusts ; Innovations ; Likelihood ratio ; Monitoring ; Physics ; Wind turbines</subject><ispartof>Journal of physics. Conference series, 2016-09, Vol.753 (5), p.52010</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2016. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c355t-7795902d79f40b8444b611fa3ca0cdcca592e56e0047b94fd1c7e04715d9f67b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/753/5/052010/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Recalde, L F</creatorcontrib><creatorcontrib>Hur, S</creatorcontrib><creatorcontrib>Leithead, W E</creatorcontrib><title>Gusts detection in a horizontal wind turbine by monitoring of innovations error of an extended Kalman filter</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>This paper presents a novel model-based detection scheme capable of detecting and diagnosing gusts. Detection is achieved by monitoring the innovations error (i.e., the difference between the estimated and measured outputs) of an extended discrete Kalman filter. It is designed to trigger a detection confirmation alarm in the presence of wind anomalies. Simulation results are presented to demonstrate that both operating and coherent extreme wind gusts can successfully be detected. The wind anomaly is identified in magnitude and shape through maximum likelihood ratio and goodness of fit, respectively. The detector is capable of isolating extreme wind gusts before the turbine over speeds.</description><subject>Anomalies</subject><subject>Extended Kalman filter</subject><subject>Goodness of fit</subject><subject>Gusts</subject><subject>Innovations</subject><subject>Likelihood ratio</subject><subject>Monitoring</subject><subject>Physics</subject><subject>Wind turbines</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkF1LwzAUhosoOKd_QQJeeTGbtE3TXMrQ-TFQUK9D2iSa0SU1SdX5602pTATB3OQk53nPgSdJjhE8Q7CqUkSKbFZiWqYE5ylOIc4ggjvJZNvY3dZVtZ8ceL-CMI-HTJJ20fvggZBBNkFbA7QBHLxYpz-tCbwF79oIEHpXayNBvQFra3SIbfMMrIq0sW98CHognbNu-OQGyI8gjZAC3PJ2Hd9Kt0G6w2RP8dbLo-97mjxdXjzOr2bLu8X1_Hw5a3KMw4wQiinMBKGqgHVVFEVdIqR43nDYiKbhmGYSlxLCgtS0UAI1RMYaYUFVSep8mpyMcztnX3vpA1vZ3pm4kmWY4CyrKM0jVY5U46z3TirWOb3mbsMQZINZNkhjg0AWzTLMRrMxeDoGte1-Jt_czx9-cawTKrLZH-w_C74A4gmJGQ</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Recalde, L F</creator><creator>Hur, S</creator><creator>Leithead, W E</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20160901</creationdate><title>Gusts detection in a horizontal wind turbine by monitoring of innovations error of an extended Kalman filter</title><author>Recalde, L F ; Hur, S ; Leithead, W E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-7795902d79f40b8444b611fa3ca0cdcca592e56e0047b94fd1c7e04715d9f67b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Anomalies</topic><topic>Extended Kalman filter</topic><topic>Goodness of fit</topic><topic>Gusts</topic><topic>Innovations</topic><topic>Likelihood ratio</topic><topic>Monitoring</topic><topic>Physics</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Recalde, L F</creatorcontrib><creatorcontrib>Hur, S</creatorcontrib><creatorcontrib>Leithead, W E</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Recalde, L F</au><au>Hur, S</au><au>Leithead, W E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gusts detection in a horizontal wind turbine by monitoring of innovations error of an extended Kalman filter</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2016-09-01</date><risdate>2016</risdate><volume>753</volume><issue>5</issue><spage>52010</spage><pages>52010-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>This paper presents a novel model-based detection scheme capable of detecting and diagnosing gusts. Detection is achieved by monitoring the innovations error (i.e., the difference between the estimated and measured outputs) of an extended discrete Kalman filter. It is designed to trigger a detection confirmation alarm in the presence of wind anomalies. Simulation results are presented to demonstrate that both operating and coherent extreme wind gusts can successfully be detected. The wind anomaly is identified in magnitude and shape through maximum likelihood ratio and goodness of fit, respectively. The detector is capable of isolating extreme wind gusts before the turbine over speeds.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/753/5/052010</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2016-09, Vol.753 (5), p.52010 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2575228993 |
source | Institute of Physics IOPscience extra; Institute of Physics Open Access Journal Titles; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library |
subjects | Anomalies Extended Kalman filter Goodness of fit Gusts Innovations Likelihood ratio Monitoring Physics Wind turbines |
title | Gusts detection in a horizontal wind turbine by monitoring of innovations error of an extended Kalman filter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T18%3A27%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gusts%20detection%20in%20a%20horizontal%20wind%20turbine%20by%20monitoring%20of%20innovations%20error%20of%20an%20extended%20Kalman%20filter&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Recalde,%20L%20F&rft.date=2016-09-01&rft.volume=753&rft.issue=5&rft.spage=52010&rft.pages=52010-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/753/5/052010&rft_dat=%3Cproquest_cross%3E2575228993%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2575228993&rft_id=info:pmid/&rfr_iscdi=true |