Nanocomposites: A New Opportunity for Developing Highly Active and Durable Bifunctional Air Electrodes for Reversible Protonic Ceramic Cells

Reversible protonic ceramic cells (RePCCs) can facilitate the global transition to renewable energy sources by providing high efficiency, scalable, and fuel‐flexible energy generation and storage at the grid level. However, RePCC technology is limited by the lack of durable air electrode materials w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2021-09, Vol.11 (36), p.n/a
Hauptverfasser: Song, Yufei, Liu, Jiapeng, Wang, Yuhao, Guan, Daqin, Seong, Arim, Liang, Mingzhuang, Robson, Matthew J., Xiong, Xiandong, Zhang, Zhiqi, Kim, Guntae, Shao, Zongping, Ciucci, Francesco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 36
container_start_page
container_title Advanced energy materials
container_volume 11
creator Song, Yufei
Liu, Jiapeng
Wang, Yuhao
Guan, Daqin
Seong, Arim
Liang, Mingzhuang
Robson, Matthew J.
Xiong, Xiandong
Zhang, Zhiqi
Kim, Guntae
Shao, Zongping
Ciucci, Francesco
description Reversible protonic ceramic cells (RePCCs) can facilitate the global transition to renewable energy sources by providing high efficiency, scalable, and fuel‐flexible energy generation and storage at the grid level. However, RePCC technology is limited by the lack of durable air electrode materials with high activity toward the oxygen reduction/evolution reaction and water formation/water‐splitting reaction. Herein, a novel nanocomposites concept for developing bifunctional RePCC electrodes with exceptional performance is reported. By harnessing the unique functionalities of nanoscale particles, nanocomposites can produce electrodes that simultaneously optimize reaction activity in both fuel cell/electrolysis operations. In this work, a nanocomposite electrode composed of tetragonal and Ruddlesden–Popper (RP) perovskite phases with a surface enriched by CeO2 and NiO nanoparticles is synthesized. Experiments and calculations identify that the RP phase promotes hydration and proton transfer, while NiO and CeO2 nanoparticles facilitate O2 surface exchange and O2‐ transfer from the surface to the major perovskite. This composite also ensures fast (H+/O2‐/e‐) triple‐conduction, thereby promoting oxygen reduction/evolution reaction activities. The as‐fabricated RePCC achieves an excellent peak power density of 531 mW cm‐2 and an electrolysis current of −364 mA cm‐2 at 1.3 V at 600 °C, while demonstrating exceptional reversible operation stability of 120 h at 550 °C. A nanocomposite concept is proposed to develop an excellent air electrode for reversible protonic ceramic cells (RePCCs). Sr0.9Ce0.1Fe0.8Ni0.2O3‐δ (SCFN) is a highly promising nanocomposite air electrode material for RePCCs, possessing high activity toward the oxygen reduction/evolution reaction and water formation/water‐splitting reaction. SCFN is suitable for the sustainable and stable operation of fuel cells and in electrolysis mode.
doi_str_mv 10.1002/aenm.202101899
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2575193017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2575193017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3839-38fd6b9e10fa1db0adb63c3ab0b4b8dc0e7ac9765bb63e2ab5455136448051443</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhCMEEhX0ytkS5xY7dv64hbZQpNIiBOfIdjbFlRMHO2mVd-ChSVtUjuxlV6NvRqvxvBuCxwRj_45DVY597BNM4iQ58wYkJGwUxgyfn27qX3pD5za4H5YQTOnA-17yykhT1sapBtw9StESdmhV18Y2baWaDhXGoilsQZtaVWs0V-tP3aFUNmoLiFc5mraWCw3oQRVt1cum4hqlyqKZBtlYk4M7hLz1IdapPfpqTWMqJdEELC8PW2t37V0UXDsY_u4r7-Nx9j6Zjxarp-dJuhhJGtNkROMiD0UCBBec5ALzXIRUUi6wYCLOJYaIyyQKA9Hr4HMRsCAgNGQsxgFhjF55t8fc2pqvFlyTbUxr-69d5gdRQBKKSdRT4yMlrXHOQpHVVpXcdhnB2b70bF96diq9NyRHw05p6P6hs3S2fPnz_gDZzYfE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2575193017</pqid></control><display><type>article</type><title>Nanocomposites: A New Opportunity for Developing Highly Active and Durable Bifunctional Air Electrodes for Reversible Protonic Ceramic Cells</title><source>Wiley Online Library</source><creator>Song, Yufei ; Liu, Jiapeng ; Wang, Yuhao ; Guan, Daqin ; Seong, Arim ; Liang, Mingzhuang ; Robson, Matthew J. ; Xiong, Xiandong ; Zhang, Zhiqi ; Kim, Guntae ; Shao, Zongping ; Ciucci, Francesco</creator><creatorcontrib>Song, Yufei ; Liu, Jiapeng ; Wang, Yuhao ; Guan, Daqin ; Seong, Arim ; Liang, Mingzhuang ; Robson, Matthew J. ; Xiong, Xiandong ; Zhang, Zhiqi ; Kim, Guntae ; Shao, Zongping ; Ciucci, Francesco</creatorcontrib><description>Reversible protonic ceramic cells (RePCCs) can facilitate the global transition to renewable energy sources by providing high efficiency, scalable, and fuel‐flexible energy generation and storage at the grid level. However, RePCC technology is limited by the lack of durable air electrode materials with high activity toward the oxygen reduction/evolution reaction and water formation/water‐splitting reaction. Herein, a novel nanocomposites concept for developing bifunctional RePCC electrodes with exceptional performance is reported. By harnessing the unique functionalities of nanoscale particles, nanocomposites can produce electrodes that simultaneously optimize reaction activity in both fuel cell/electrolysis operations. In this work, a nanocomposite electrode composed of tetragonal and Ruddlesden–Popper (RP) perovskite phases with a surface enriched by CeO2 and NiO nanoparticles is synthesized. Experiments and calculations identify that the RP phase promotes hydration and proton transfer, while NiO and CeO2 nanoparticles facilitate O2 surface exchange and O2‐ transfer from the surface to the major perovskite. This composite also ensures fast (H+/O2‐/e‐) triple‐conduction, thereby promoting oxygen reduction/evolution reaction activities. The as‐fabricated RePCC achieves an excellent peak power density of 531 mW cm‐2 and an electrolysis current of −364 mA cm‐2 at 1.3 V at 600 °C, while demonstrating exceptional reversible operation stability of 120 h at 550 °C. A nanocomposite concept is proposed to develop an excellent air electrode for reversible protonic ceramic cells (RePCCs). Sr0.9Ce0.1Fe0.8Ni0.2O3‐δ (SCFN) is a highly promising nanocomposite air electrode material for RePCCs, possessing high activity toward the oxygen reduction/evolution reaction and water formation/water‐splitting reaction. SCFN is suitable for the sustainable and stable operation of fuel cells and in electrolysis mode.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202101899</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>air electrodes ; bifunctional ; Cerium oxides ; Electrode materials ; Electrodes ; Electrolysis ; Electrolytic cells ; Energy storage ; Evolution ; Fuel cells ; Nanocomposites ; Nanoparticles ; Nickel oxides ; Perovskites ; Renewable energy sources ; reversible protonic ceramic cells</subject><ispartof>Advanced energy materials, 2021-09, Vol.11 (36), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3839-38fd6b9e10fa1db0adb63c3ab0b4b8dc0e7ac9765bb63e2ab5455136448051443</citedby><cites>FETCH-LOGICAL-c3839-38fd6b9e10fa1db0adb63c3ab0b4b8dc0e7ac9765bb63e2ab5455136448051443</cites><orcidid>0000-0003-0614-5537</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202101899$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202101899$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Song, Yufei</creatorcontrib><creatorcontrib>Liu, Jiapeng</creatorcontrib><creatorcontrib>Wang, Yuhao</creatorcontrib><creatorcontrib>Guan, Daqin</creatorcontrib><creatorcontrib>Seong, Arim</creatorcontrib><creatorcontrib>Liang, Mingzhuang</creatorcontrib><creatorcontrib>Robson, Matthew J.</creatorcontrib><creatorcontrib>Xiong, Xiandong</creatorcontrib><creatorcontrib>Zhang, Zhiqi</creatorcontrib><creatorcontrib>Kim, Guntae</creatorcontrib><creatorcontrib>Shao, Zongping</creatorcontrib><creatorcontrib>Ciucci, Francesco</creatorcontrib><title>Nanocomposites: A New Opportunity for Developing Highly Active and Durable Bifunctional Air Electrodes for Reversible Protonic Ceramic Cells</title><title>Advanced energy materials</title><description>Reversible protonic ceramic cells (RePCCs) can facilitate the global transition to renewable energy sources by providing high efficiency, scalable, and fuel‐flexible energy generation and storage at the grid level. However, RePCC technology is limited by the lack of durable air electrode materials with high activity toward the oxygen reduction/evolution reaction and water formation/water‐splitting reaction. Herein, a novel nanocomposites concept for developing bifunctional RePCC electrodes with exceptional performance is reported. By harnessing the unique functionalities of nanoscale particles, nanocomposites can produce electrodes that simultaneously optimize reaction activity in both fuel cell/electrolysis operations. In this work, a nanocomposite electrode composed of tetragonal and Ruddlesden–Popper (RP) perovskite phases with a surface enriched by CeO2 and NiO nanoparticles is synthesized. Experiments and calculations identify that the RP phase promotes hydration and proton transfer, while NiO and CeO2 nanoparticles facilitate O2 surface exchange and O2‐ transfer from the surface to the major perovskite. This composite also ensures fast (H+/O2‐/e‐) triple‐conduction, thereby promoting oxygen reduction/evolution reaction activities. The as‐fabricated RePCC achieves an excellent peak power density of 531 mW cm‐2 and an electrolysis current of −364 mA cm‐2 at 1.3 V at 600 °C, while demonstrating exceptional reversible operation stability of 120 h at 550 °C. A nanocomposite concept is proposed to develop an excellent air electrode for reversible protonic ceramic cells (RePCCs). Sr0.9Ce0.1Fe0.8Ni0.2O3‐δ (SCFN) is a highly promising nanocomposite air electrode material for RePCCs, possessing high activity toward the oxygen reduction/evolution reaction and water formation/water‐splitting reaction. SCFN is suitable for the sustainable and stable operation of fuel cells and in electrolysis mode.</description><subject>air electrodes</subject><subject>bifunctional</subject><subject>Cerium oxides</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electrolysis</subject><subject>Electrolytic cells</subject><subject>Energy storage</subject><subject>Evolution</subject><subject>Fuel cells</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Nickel oxides</subject><subject>Perovskites</subject><subject>Renewable energy sources</subject><subject>reversible protonic ceramic cells</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhCMEEhX0ytkS5xY7dv64hbZQpNIiBOfIdjbFlRMHO2mVd-ChSVtUjuxlV6NvRqvxvBuCxwRj_45DVY597BNM4iQ58wYkJGwUxgyfn27qX3pD5za4H5YQTOnA-17yykhT1sapBtw9StESdmhV18Y2baWaDhXGoilsQZtaVWs0V-tP3aFUNmoLiFc5mraWCw3oQRVt1cum4hqlyqKZBtlYk4M7hLz1IdapPfpqTWMqJdEELC8PW2t37V0UXDsY_u4r7-Nx9j6Zjxarp-dJuhhJGtNkROMiD0UCBBec5ALzXIRUUi6wYCLOJYaIyyQKA9Hr4HMRsCAgNGQsxgFhjF55t8fc2pqvFlyTbUxr-69d5gdRQBKKSdRT4yMlrXHOQpHVVpXcdhnB2b70bF96diq9NyRHw05p6P6hs3S2fPnz_gDZzYfE</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Song, Yufei</creator><creator>Liu, Jiapeng</creator><creator>Wang, Yuhao</creator><creator>Guan, Daqin</creator><creator>Seong, Arim</creator><creator>Liang, Mingzhuang</creator><creator>Robson, Matthew J.</creator><creator>Xiong, Xiandong</creator><creator>Zhang, Zhiqi</creator><creator>Kim, Guntae</creator><creator>Shao, Zongping</creator><creator>Ciucci, Francesco</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0614-5537</orcidid></search><sort><creationdate>20210901</creationdate><title>Nanocomposites: A New Opportunity for Developing Highly Active and Durable Bifunctional Air Electrodes for Reversible Protonic Ceramic Cells</title><author>Song, Yufei ; Liu, Jiapeng ; Wang, Yuhao ; Guan, Daqin ; Seong, Arim ; Liang, Mingzhuang ; Robson, Matthew J. ; Xiong, Xiandong ; Zhang, Zhiqi ; Kim, Guntae ; Shao, Zongping ; Ciucci, Francesco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3839-38fd6b9e10fa1db0adb63c3ab0b4b8dc0e7ac9765bb63e2ab5455136448051443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>air electrodes</topic><topic>bifunctional</topic><topic>Cerium oxides</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electrolysis</topic><topic>Electrolytic cells</topic><topic>Energy storage</topic><topic>Evolution</topic><topic>Fuel cells</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Nickel oxides</topic><topic>Perovskites</topic><topic>Renewable energy sources</topic><topic>reversible protonic ceramic cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Yufei</creatorcontrib><creatorcontrib>Liu, Jiapeng</creatorcontrib><creatorcontrib>Wang, Yuhao</creatorcontrib><creatorcontrib>Guan, Daqin</creatorcontrib><creatorcontrib>Seong, Arim</creatorcontrib><creatorcontrib>Liang, Mingzhuang</creatorcontrib><creatorcontrib>Robson, Matthew J.</creatorcontrib><creatorcontrib>Xiong, Xiandong</creatorcontrib><creatorcontrib>Zhang, Zhiqi</creatorcontrib><creatorcontrib>Kim, Guntae</creatorcontrib><creatorcontrib>Shao, Zongping</creatorcontrib><creatorcontrib>Ciucci, Francesco</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Yufei</au><au>Liu, Jiapeng</au><au>Wang, Yuhao</au><au>Guan, Daqin</au><au>Seong, Arim</au><au>Liang, Mingzhuang</au><au>Robson, Matthew J.</au><au>Xiong, Xiandong</au><au>Zhang, Zhiqi</au><au>Kim, Guntae</au><au>Shao, Zongping</au><au>Ciucci, Francesco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanocomposites: A New Opportunity for Developing Highly Active and Durable Bifunctional Air Electrodes for Reversible Protonic Ceramic Cells</atitle><jtitle>Advanced energy materials</jtitle><date>2021-09-01</date><risdate>2021</risdate><volume>11</volume><issue>36</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Reversible protonic ceramic cells (RePCCs) can facilitate the global transition to renewable energy sources by providing high efficiency, scalable, and fuel‐flexible energy generation and storage at the grid level. However, RePCC technology is limited by the lack of durable air electrode materials with high activity toward the oxygen reduction/evolution reaction and water formation/water‐splitting reaction. Herein, a novel nanocomposites concept for developing bifunctional RePCC electrodes with exceptional performance is reported. By harnessing the unique functionalities of nanoscale particles, nanocomposites can produce electrodes that simultaneously optimize reaction activity in both fuel cell/electrolysis operations. In this work, a nanocomposite electrode composed of tetragonal and Ruddlesden–Popper (RP) perovskite phases with a surface enriched by CeO2 and NiO nanoparticles is synthesized. Experiments and calculations identify that the RP phase promotes hydration and proton transfer, while NiO and CeO2 nanoparticles facilitate O2 surface exchange and O2‐ transfer from the surface to the major perovskite. This composite also ensures fast (H+/O2‐/e‐) triple‐conduction, thereby promoting oxygen reduction/evolution reaction activities. The as‐fabricated RePCC achieves an excellent peak power density of 531 mW cm‐2 and an electrolysis current of −364 mA cm‐2 at 1.3 V at 600 °C, while demonstrating exceptional reversible operation stability of 120 h at 550 °C. A nanocomposite concept is proposed to develop an excellent air electrode for reversible protonic ceramic cells (RePCCs). Sr0.9Ce0.1Fe0.8Ni0.2O3‐δ (SCFN) is a highly promising nanocomposite air electrode material for RePCCs, possessing high activity toward the oxygen reduction/evolution reaction and water formation/water‐splitting reaction. SCFN is suitable for the sustainable and stable operation of fuel cells and in electrolysis mode.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202101899</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0614-5537</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2021-09, Vol.11 (36), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_2575193017
source Wiley Online Library
subjects air electrodes
bifunctional
Cerium oxides
Electrode materials
Electrodes
Electrolysis
Electrolytic cells
Energy storage
Evolution
Fuel cells
Nanocomposites
Nanoparticles
Nickel oxides
Perovskites
Renewable energy sources
reversible protonic ceramic cells
title Nanocomposites: A New Opportunity for Developing Highly Active and Durable Bifunctional Air Electrodes for Reversible Protonic Ceramic Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T15%3A37%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanocomposites:%20A%20New%20Opportunity%20for%20Developing%20Highly%20Active%20and%20Durable%20Bifunctional%20Air%20Electrodes%20for%20Reversible%20Protonic%20Ceramic%20Cells&rft.jtitle=Advanced%20energy%20materials&rft.au=Song,%20Yufei&rft.date=2021-09-01&rft.volume=11&rft.issue=36&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202101899&rft_dat=%3Cproquest_cross%3E2575193017%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2575193017&rft_id=info:pmid/&rfr_iscdi=true