A staggered coupling strategy for the finite element analysis of warm deep drawing process

The thermomechanical finite element analysis of warm forming processes enables an improved comprehension of the process parameters affecting the material formability. However, the thermal and mechanical coupling problem is still a challenge from the computational standpoint. A staggered strategy for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Martins, J M P, Cunha, P M, Neto, D M, Alves, J L, Oliveira, M C, Laurent, H, Menezes, L F
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 32033
container_title
container_volume 734
creator Martins, J M P
Cunha, P M
Neto, D M
Alves, J L
Oliveira, M C
Laurent, H
Menezes, L F
description The thermomechanical finite element analysis of warm forming processes enables an improved comprehension of the process parameters affecting the material formability. However, the thermal and mechanical coupling problem is still a challenge from the computational standpoint. A staggered strategy for the thermomechanical coupling problem is presented in this study, which is based on an isothermal split approach and allows the treatment of the two problems separately. The exchange of information between the mechanical and the thermal problem is performed to achieve a compromise between computational cost and accuracy. The proposed algorithm was implemented in DD3IMP in-house finite element code. Its performance is analysed and compared with a classical strategy commonly employed for solving thermomechanical problems.
doi_str_mv 10.1088/1742-6596/734/3/032033
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2575161710</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2575161710</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-f4ce0f148bfea087177a72a83ef91b0481f9e1c331339bb1c8d1f8e9bd5a18ef3</originalsourceid><addsrcrecordid>eNqFkEFLwzAYhosoqNO_IAFPHmrzNW2THsdQpwwU1IuXkLZfuo6uqUnn2L-3pbIhCJ4Svjx58-bxvCugt0CFCIBHoZ_EaRJwFgUsoCykjB15Z_uD4_1eiFPv3LkV7QnG-Jn3MSWuU2WJFguSm01bV03Zj6zqsNwRbSzplkh01VQdEqxxjU1HVKPqnascMZpslV2TArElhVXb4XZrTY7OXXgnWtUOL3_Wifd-f_c2m_uL54fH2XTh51HCO19HOVINkcg0Kio4cK54qARDnUJGIwE6RcgZA8bSLINcFKAFplkRKxCo2cS7GXOXqpatrdbK7qRRlZxPF3KY0RCA8ij-gp69Htm-4-cGXSdXZmP73zgZxjyGBDjQnkpGKrfGOYt6HwtUDs7loFMOamXvXDI5Oj9UqUx7SH56mb3-4mRbDLXDP9h_HvgGMdGQcw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2575161710</pqid></control><display><type>conference_proceeding</type><title>A staggered coupling strategy for the finite element analysis of warm deep drawing process</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Institute of Physics Open Access Journal Titles</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Martins, J M P ; Cunha, P M ; Neto, D M ; Alves, J L ; Oliveira, M C ; Laurent, H ; Menezes, L F</creator><creatorcontrib>Martins, J M P ; Cunha, P M ; Neto, D M ; Alves, J L ; Oliveira, M C ; Laurent, H ; Menezes, L F</creatorcontrib><description>The thermomechanical finite element analysis of warm forming processes enables an improved comprehension of the process parameters affecting the material formability. However, the thermal and mechanical coupling problem is still a challenge from the computational standpoint. A staggered strategy for the thermomechanical coupling problem is presented in this study, which is based on an isothermal split approach and allows the treatment of the two problems separately. The exchange of information between the mechanical and the thermal problem is performed to achieve a compromise between computational cost and accuracy. The proposed algorithm was implemented in DD3IMP in-house finite element code. Its performance is analysed and compared with a classical strategy commonly employed for solving thermomechanical problems.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/734/3/032033</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Chemical Sciences ; Computing costs ; Coupling ; Deep drawing ; Finite element analysis ; Finite element method ; Material chemistry ; Physics ; Process parameters ; Thermomechanical analysis ; Thermomechanical treatment</subject><ispartof>10th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes, 2016, Vol.734 (3), p.32033</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2016. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-f4ce0f148bfea087177a72a83ef91b0481f9e1c331339bb1c8d1f8e9bd5a18ef3</citedby><cites>FETCH-LOGICAL-c467t-f4ce0f148bfea087177a72a83ef91b0481f9e1c331339bb1c8d1f8e9bd5a18ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/734/3/032033/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>309,310,314,780,784,885,27924,27925,38868,38890,53840,53867</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02110745$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Martins, J M P</creatorcontrib><creatorcontrib>Cunha, P M</creatorcontrib><creatorcontrib>Neto, D M</creatorcontrib><creatorcontrib>Alves, J L</creatorcontrib><creatorcontrib>Oliveira, M C</creatorcontrib><creatorcontrib>Laurent, H</creatorcontrib><creatorcontrib>Menezes, L F</creatorcontrib><title>A staggered coupling strategy for the finite element analysis of warm deep drawing process</title><title>10th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>The thermomechanical finite element analysis of warm forming processes enables an improved comprehension of the process parameters affecting the material formability. However, the thermal and mechanical coupling problem is still a challenge from the computational standpoint. A staggered strategy for the thermomechanical coupling problem is presented in this study, which is based on an isothermal split approach and allows the treatment of the two problems separately. The exchange of information between the mechanical and the thermal problem is performed to achieve a compromise between computational cost and accuracy. The proposed algorithm was implemented in DD3IMP in-house finite element code. Its performance is analysed and compared with a classical strategy commonly employed for solving thermomechanical problems.</description><subject>Algorithms</subject><subject>Chemical Sciences</subject><subject>Computing costs</subject><subject>Coupling</subject><subject>Deep drawing</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Material chemistry</subject><subject>Physics</subject><subject>Process parameters</subject><subject>Thermomechanical analysis</subject><subject>Thermomechanical treatment</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2016</creationdate><recordtype>conference_proceeding</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkEFLwzAYhosoqNO_IAFPHmrzNW2THsdQpwwU1IuXkLZfuo6uqUnn2L-3pbIhCJ4Svjx58-bxvCugt0CFCIBHoZ_EaRJwFgUsoCykjB15Z_uD4_1eiFPv3LkV7QnG-Jn3MSWuU2WJFguSm01bV03Zj6zqsNwRbSzplkh01VQdEqxxjU1HVKPqnascMZpslV2TArElhVXb4XZrTY7OXXgnWtUOL3_Wifd-f_c2m_uL54fH2XTh51HCO19HOVINkcg0Kio4cK54qARDnUJGIwE6RcgZA8bSLINcFKAFplkRKxCo2cS7GXOXqpatrdbK7qRRlZxPF3KY0RCA8ij-gp69Htm-4-cGXSdXZmP73zgZxjyGBDjQnkpGKrfGOYt6HwtUDs7loFMOamXvXDI5Oj9UqUx7SH56mb3-4mRbDLXDP9h_HvgGMdGQcw</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Martins, J M P</creator><creator>Cunha, P M</creator><creator>Neto, D M</creator><creator>Alves, J L</creator><creator>Oliveira, M C</creator><creator>Laurent, H</creator><creator>Menezes, L F</creator><general>IOP Publishing</general><general>IOP PUBLISHING LTD</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>1XC</scope></search><sort><creationdate>20160801</creationdate><title>A staggered coupling strategy for the finite element analysis of warm deep drawing process</title><author>Martins, J M P ; Cunha, P M ; Neto, D M ; Alves, J L ; Oliveira, M C ; Laurent, H ; Menezes, L F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-f4ce0f148bfea087177a72a83ef91b0481f9e1c331339bb1c8d1f8e9bd5a18ef3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Chemical Sciences</topic><topic>Computing costs</topic><topic>Coupling</topic><topic>Deep drawing</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Material chemistry</topic><topic>Physics</topic><topic>Process parameters</topic><topic>Thermomechanical analysis</topic><topic>Thermomechanical treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martins, J M P</creatorcontrib><creatorcontrib>Cunha, P M</creatorcontrib><creatorcontrib>Neto, D M</creatorcontrib><creatorcontrib>Alves, J L</creatorcontrib><creatorcontrib>Oliveira, M C</creatorcontrib><creatorcontrib>Laurent, H</creatorcontrib><creatorcontrib>Menezes, L F</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Hyper Article en Ligne (HAL)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martins, J M P</au><au>Cunha, P M</au><au>Neto, D M</au><au>Alves, J L</au><au>Oliveira, M C</au><au>Laurent, H</au><au>Menezes, L F</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A staggered coupling strategy for the finite element analysis of warm deep drawing process</atitle><btitle>10th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes</btitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2016-08-01</date><risdate>2016</risdate><volume>734</volume><issue>3</issue><spage>32033</spage><pages>32033-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>The thermomechanical finite element analysis of warm forming processes enables an improved comprehension of the process parameters affecting the material formability. However, the thermal and mechanical coupling problem is still a challenge from the computational standpoint. A staggered strategy for the thermomechanical coupling problem is presented in this study, which is based on an isothermal split approach and allows the treatment of the two problems separately. The exchange of information between the mechanical and the thermal problem is performed to achieve a compromise between computational cost and accuracy. The proposed algorithm was implemented in DD3IMP in-house finite element code. Its performance is analysed and compared with a classical strategy commonly employed for solving thermomechanical problems.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/734/3/032033</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof 10th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes, 2016, Vol.734 (3), p.32033
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2575161710
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Institute of Physics Open Access Journal Titles; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Algorithms
Chemical Sciences
Computing costs
Coupling
Deep drawing
Finite element analysis
Finite element method
Material chemistry
Physics
Process parameters
Thermomechanical analysis
Thermomechanical treatment
title A staggered coupling strategy for the finite element analysis of warm deep drawing process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T11%3A05%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20staggered%20coupling%20strategy%20for%20the%20finite%20element%20analysis%20of%20warm%20deep%20drawing%20process&rft.btitle=10th%20International%20Conference%20and%20Workshop%20on%20Numerical%20Simulation%20of%203D%20Sheet%20Metal%20Forming%20Processes&rft.au=Martins,%20J%20M%20P&rft.date=2016-08-01&rft.volume=734&rft.issue=3&rft.spage=32033&rft.pages=32033-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/734/3/032033&rft_dat=%3Cproquest_cross%3E2575161710%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2575161710&rft_id=info:pmid/&rfr_iscdi=true