Geographically Weighted Regression Hybridized with Kriging Model for Delineation of Drought-Prone Areas
Assessing spatial variability of drought-prone areas is important for disaster preparedness and impact management. This study applied state-of-the-art geographically weighted regression hybridized with kriging method (GWRKrig) to map the spatial variability of drought-prone areas in the northwest of...
Gespeichert in:
Veröffentlicht in: | Environmental modeling & assessment 2021-10, Vol.26 (5), p.803-821 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 821 |
---|---|
container_issue | 5 |
container_start_page | 803 |
container_title | Environmental modeling & assessment |
container_volume | 26 |
creator | Bahmani, Shadi Naganna, Sujay Raghavendra Ghorbani, Mohammad Ali Shahabi, Mahmood Asadi, Esmaeil Shahid, Shamsuddin |
description | Assessing spatial variability of drought-prone areas is important for disaster preparedness and impact management. This study applied state-of-the-art geographically weighted regression hybridized with kriging method (GWRKrig) to map the spatial variability of drought-prone areas in the northwest of Iran based on the Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI). Rainfall and evapotranspiration data from 47 synoptic stations over 20 years were used to generate SPI and SPEI, and topographical (altitude) data were used for GWRKrig. The results obtained using GWRKrig were compared with that of standalone GWR, regression kriging (RegKrig), and ordinary kriging (Krig) methods. The GWRKrig method emerged as a promising tool for spatial interpolation of drought indices based on performance evaluation measures, namely, the root mean squared error (RMSE) and coefficient of determination (
R
2
). The SPEI-based drought intensity interpolated via GWRKrig revealed relatively precise spatial variability of drought zones. The method proposed in this study would assist in the accurate delineation of drought-prone areas, which is the foremost venture in the planning hierarchy of drought management schemes and their implementation. |
doi_str_mv | 10.1007/s10666-021-09789-z |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2575154446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A713975857</galeid><sourcerecordid>A713975857</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-a85e165c39d3a66f06e54600e225c6086d9415eb25fe16d2d2877877ee2fd3e03</originalsourceid><addsrcrecordid>eNp9kVFLHDEUhUNRqK79A30K9Dl6k5kkM4-Ltlq0KKL0MWQnN7NZxsk2mUV2f72xI_St5ELC5Tsnl3sI-crhnAPoi8xBKcVAcAatblp2-EROuNQVE63SR-VdC2AChPpMTnPeABQe5AnprzH2yW7XobPDsKe_MfTrCR19xD5hziGO9Ga_SsGFQ-m-hmlNb1Pow9jTX9HhQH1M9AqHMKKd3uno6VWKu-LCHlIckS4T2nxGjr0dMn75uBfk-cf3p8sbdnd__fNyece6SjYTs41ErmRXta6ySnlQKGsFgELITkGjXFtziSshfeGccKLRuhSi8K5CqBbk2-y7TfHPDvNkNnGXxvKlEVJLLuu6VoU6n6neDmjC6OOUbFeOw5fQlaF9KP2l5lWrZVPWuCBiFnQp5pzQm20KLzbtDQfznoCZEzAlAfM3AXMoomoW5QKPPaZ_s_xH9QYwkYnA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2575154446</pqid></control><display><type>article</type><title>Geographically Weighted Regression Hybridized with Kriging Model for Delineation of Drought-Prone Areas</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bahmani, Shadi ; Naganna, Sujay Raghavendra ; Ghorbani, Mohammad Ali ; Shahabi, Mahmood ; Asadi, Esmaeil ; Shahid, Shamsuddin</creator><creatorcontrib>Bahmani, Shadi ; Naganna, Sujay Raghavendra ; Ghorbani, Mohammad Ali ; Shahabi, Mahmood ; Asadi, Esmaeil ; Shahid, Shamsuddin</creatorcontrib><description>Assessing spatial variability of drought-prone areas is important for disaster preparedness and impact management. This study applied state-of-the-art geographically weighted regression hybridized with kriging method (GWRKrig) to map the spatial variability of drought-prone areas in the northwest of Iran based on the Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI). Rainfall and evapotranspiration data from 47 synoptic stations over 20 years were used to generate SPI and SPEI, and topographical (altitude) data were used for GWRKrig. The results obtained using GWRKrig were compared with that of standalone GWR, regression kriging (RegKrig), and ordinary kriging (Krig) methods. The GWRKrig method emerged as a promising tool for spatial interpolation of drought indices based on performance evaluation measures, namely, the root mean squared error (RMSE) and coefficient of determination (
R
2
). The SPEI-based drought intensity interpolated via GWRKrig revealed relatively precise spatial variability of drought zones. The method proposed in this study would assist in the accurate delineation of drought-prone areas, which is the foremost venture in the planning hierarchy of drought management schemes and their implementation.</description><identifier>ISSN: 1420-2026</identifier><identifier>EISSN: 1573-2967</identifier><identifier>DOI: 10.1007/s10666-021-09789-z</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applications of Mathematics ; Comparative analysis ; Delineation ; Disaster management ; Drought ; Drought index ; Droughts ; Earth and Environmental Science ; Emergency preparedness ; Environment ; Evapotranspiration ; Math. Appl. in Environmental Science ; Mathematical Modeling and Industrial Mathematics ; Operations Research/Decision Theory ; Performance evaluation ; Precipitation ; Rain ; Rain and rainfall ; Rainfall ; Regression models ; Root-mean-square errors ; Standardized precipitation index ; State-of-the-art reviews</subject><ispartof>Environmental modeling & assessment, 2021-10, Vol.26 (5), p.803-821</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-a85e165c39d3a66f06e54600e225c6086d9415eb25fe16d2d2877877ee2fd3e03</citedby><cites>FETCH-LOGICAL-c358t-a85e165c39d3a66f06e54600e225c6086d9415eb25fe16d2d2877877ee2fd3e03</cites><orcidid>0000-0002-0482-1936</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10666-021-09789-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10666-021-09789-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Bahmani, Shadi</creatorcontrib><creatorcontrib>Naganna, Sujay Raghavendra</creatorcontrib><creatorcontrib>Ghorbani, Mohammad Ali</creatorcontrib><creatorcontrib>Shahabi, Mahmood</creatorcontrib><creatorcontrib>Asadi, Esmaeil</creatorcontrib><creatorcontrib>Shahid, Shamsuddin</creatorcontrib><title>Geographically Weighted Regression Hybridized with Kriging Model for Delineation of Drought-Prone Areas</title><title>Environmental modeling & assessment</title><addtitle>Environ Model Assess</addtitle><description>Assessing spatial variability of drought-prone areas is important for disaster preparedness and impact management. This study applied state-of-the-art geographically weighted regression hybridized with kriging method (GWRKrig) to map the spatial variability of drought-prone areas in the northwest of Iran based on the Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI). Rainfall and evapotranspiration data from 47 synoptic stations over 20 years were used to generate SPI and SPEI, and topographical (altitude) data were used for GWRKrig. The results obtained using GWRKrig were compared with that of standalone GWR, regression kriging (RegKrig), and ordinary kriging (Krig) methods. The GWRKrig method emerged as a promising tool for spatial interpolation of drought indices based on performance evaluation measures, namely, the root mean squared error (RMSE) and coefficient of determination (
R
2
). The SPEI-based drought intensity interpolated via GWRKrig revealed relatively precise spatial variability of drought zones. The method proposed in this study would assist in the accurate delineation of drought-prone areas, which is the foremost venture in the planning hierarchy of drought management schemes and their implementation.</description><subject>Applications of Mathematics</subject><subject>Comparative analysis</subject><subject>Delineation</subject><subject>Disaster management</subject><subject>Drought</subject><subject>Drought index</subject><subject>Droughts</subject><subject>Earth and Environmental Science</subject><subject>Emergency preparedness</subject><subject>Environment</subject><subject>Evapotranspiration</subject><subject>Math. Appl. in Environmental Science</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Operations Research/Decision Theory</subject><subject>Performance evaluation</subject><subject>Precipitation</subject><subject>Rain</subject><subject>Rain and rainfall</subject><subject>Rainfall</subject><subject>Regression models</subject><subject>Root-mean-square errors</subject><subject>Standardized precipitation index</subject><subject>State-of-the-art reviews</subject><issn>1420-2026</issn><issn>1573-2967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kVFLHDEUhUNRqK79A30K9Dl6k5kkM4-Ltlq0KKL0MWQnN7NZxsk2mUV2f72xI_St5ELC5Tsnl3sI-crhnAPoi8xBKcVAcAatblp2-EROuNQVE63SR-VdC2AChPpMTnPeABQe5AnprzH2yW7XobPDsKe_MfTrCR19xD5hziGO9Ga_SsGFQ-m-hmlNb1Pow9jTX9HhQH1M9AqHMKKd3uno6VWKu-LCHlIckS4T2nxGjr0dMn75uBfk-cf3p8sbdnd__fNyece6SjYTs41ErmRXta6ySnlQKGsFgELITkGjXFtziSshfeGccKLRuhSi8K5CqBbk2-y7TfHPDvNkNnGXxvKlEVJLLuu6VoU6n6neDmjC6OOUbFeOw5fQlaF9KP2l5lWrZVPWuCBiFnQp5pzQm20KLzbtDQfznoCZEzAlAfM3AXMoomoW5QKPPaZ_s_xH9QYwkYnA</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Bahmani, Shadi</creator><creator>Naganna, Sujay Raghavendra</creator><creator>Ghorbani, Mohammad Ali</creator><creator>Shahabi, Mahmood</creator><creator>Asadi, Esmaeil</creator><creator>Shahid, Shamsuddin</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7ST</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-0482-1936</orcidid></search><sort><creationdate>20211001</creationdate><title>Geographically Weighted Regression Hybridized with Kriging Model for Delineation of Drought-Prone Areas</title><author>Bahmani, Shadi ; Naganna, Sujay Raghavendra ; Ghorbani, Mohammad Ali ; Shahabi, Mahmood ; Asadi, Esmaeil ; Shahid, Shamsuddin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-a85e165c39d3a66f06e54600e225c6086d9415eb25fe16d2d2877877ee2fd3e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applications of Mathematics</topic><topic>Comparative analysis</topic><topic>Delineation</topic><topic>Disaster management</topic><topic>Drought</topic><topic>Drought index</topic><topic>Droughts</topic><topic>Earth and Environmental Science</topic><topic>Emergency preparedness</topic><topic>Environment</topic><topic>Evapotranspiration</topic><topic>Math. Appl. in Environmental Science</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Operations Research/Decision Theory</topic><topic>Performance evaluation</topic><topic>Precipitation</topic><topic>Rain</topic><topic>Rain and rainfall</topic><topic>Rainfall</topic><topic>Regression models</topic><topic>Root-mean-square errors</topic><topic>Standardized precipitation index</topic><topic>State-of-the-art reviews</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bahmani, Shadi</creatorcontrib><creatorcontrib>Naganna, Sujay Raghavendra</creatorcontrib><creatorcontrib>Ghorbani, Mohammad Ali</creatorcontrib><creatorcontrib>Shahabi, Mahmood</creatorcontrib><creatorcontrib>Asadi, Esmaeil</creatorcontrib><creatorcontrib>Shahid, Shamsuddin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Environment Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Environmental modeling & assessment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bahmani, Shadi</au><au>Naganna, Sujay Raghavendra</au><au>Ghorbani, Mohammad Ali</au><au>Shahabi, Mahmood</au><au>Asadi, Esmaeil</au><au>Shahid, Shamsuddin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geographically Weighted Regression Hybridized with Kriging Model for Delineation of Drought-Prone Areas</atitle><jtitle>Environmental modeling & assessment</jtitle><stitle>Environ Model Assess</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>26</volume><issue>5</issue><spage>803</spage><epage>821</epage><pages>803-821</pages><issn>1420-2026</issn><eissn>1573-2967</eissn><abstract>Assessing spatial variability of drought-prone areas is important for disaster preparedness and impact management. This study applied state-of-the-art geographically weighted regression hybridized with kriging method (GWRKrig) to map the spatial variability of drought-prone areas in the northwest of Iran based on the Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI). Rainfall and evapotranspiration data from 47 synoptic stations over 20 years were used to generate SPI and SPEI, and topographical (altitude) data were used for GWRKrig. The results obtained using GWRKrig were compared with that of standalone GWR, regression kriging (RegKrig), and ordinary kriging (Krig) methods. The GWRKrig method emerged as a promising tool for spatial interpolation of drought indices based on performance evaluation measures, namely, the root mean squared error (RMSE) and coefficient of determination (
R
2
). The SPEI-based drought intensity interpolated via GWRKrig revealed relatively precise spatial variability of drought zones. The method proposed in this study would assist in the accurate delineation of drought-prone areas, which is the foremost venture in the planning hierarchy of drought management schemes and their implementation.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10666-021-09789-z</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-0482-1936</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1420-2026 |
ispartof | Environmental modeling & assessment, 2021-10, Vol.26 (5), p.803-821 |
issn | 1420-2026 1573-2967 |
language | eng |
recordid | cdi_proquest_journals_2575154446 |
source | SpringerLink Journals - AutoHoldings |
subjects | Applications of Mathematics Comparative analysis Delineation Disaster management Drought Drought index Droughts Earth and Environmental Science Emergency preparedness Environment Evapotranspiration Math. Appl. in Environmental Science Mathematical Modeling and Industrial Mathematics Operations Research/Decision Theory Performance evaluation Precipitation Rain Rain and rainfall Rainfall Regression models Root-mean-square errors Standardized precipitation index State-of-the-art reviews |
title | Geographically Weighted Regression Hybridized with Kriging Model for Delineation of Drought-Prone Areas |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A23%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geographically%20Weighted%20Regression%20Hybridized%20with%20Kriging%20Model%20for%20Delineation%20of%20Drought-Prone%20Areas&rft.jtitle=Environmental%20modeling%20&%20assessment&rft.au=Bahmani,%20Shadi&rft.date=2021-10-01&rft.volume=26&rft.issue=5&rft.spage=803&rft.epage=821&rft.pages=803-821&rft.issn=1420-2026&rft.eissn=1573-2967&rft_id=info:doi/10.1007/s10666-021-09789-z&rft_dat=%3Cgale_proqu%3EA713975857%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2575154446&rft_id=info:pmid/&rft_galeid=A713975857&rfr_iscdi=true |