Deep-Learning-Based Probabilistic Estimation of Solar PV Soiling Loss
Although the integration of solar photovoltaic (PV) systems is gaining widespread acceptance, the intermittency and instability of PV power generation lead to several operational challenges. PV power generation can be impacted by multiple environmental factors, such as the soiling of solar PV panels...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on sustainable energy 2021-10, Vol.12 (4), p.2436-2444 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2444 |
---|---|
container_issue | 4 |
container_start_page | 2436 |
container_title | IEEE transactions on sustainable energy |
container_volume | 12 |
creator | Zhang, Wenjie Liu, Shunqi Gandhi, Oktoviano Rodriguez-Gallegos, Carlos D. Quan, Hao Srinivasan, Dipti |
description | Although the integration of solar photovoltaic (PV) systems is gaining widespread acceptance, the intermittency and instability of PV power generation lead to several operational challenges. PV power generation can be impacted by multiple environmental factors, such as the soiling of solar PV panels. There are some conventional methods proposed to deterministically estimate the solar power loss caused by soiling. However, the error of deterministic estimation cannot be eliminated due to the inherent volatility of solar power. Therefore, this paper proposes a probabilistic quantification method, namely SolarQRNN, to estimate the power loss by leveraging images captured by surveillance cameras. Specifically, the proposed model employs a novel quantile loss function and deep learning structures (backbone networks based on residual convolution units), which combines quantile regression and computer vision models for the first time. The proposed method has been extensively tested on a solar panel soiling image dataset. Test results indicate that SolarQRNN outperforms benchmark classification models with at least 51% improvements in evaluating metrics. |
doi_str_mv | 10.1109/TSTE.2021.3098677 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2575131446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9492833</ieee_id><sourcerecordid>2575131446</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-7e149d06dea850ea8e26154e958e0b9f3dfc60dbcf638996f4722e1933f4ddbb3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EElXpByA2kVin2B7HiZdQwkOKRKUWtpYTj6tUJS52uuDvcVXUWczcxZ3XIeSW0TljVD2sV-t6zilnc6CqkmV5QSZMCZUDhfLyrLm6JrMYtzQFAEigE1I_I-7zBk0Y-mGTP5mINlsG35q23_Vx7LusTvnbjL0fMu-yld-ZkC2_kkiGYZM1PsYbcuXMLuLsv07J50u9Xrzlzcfr--KxyTuuYMxLZEJZKi2aqqApIZesEKiKCmmrHFjXSWrbzkmolJJOlJwjUwBOWNu2MCX3p7n74H8OGEe99YcwpJWaF2XBgAkhk4udXF1ItwV0eh_SB-FXM6qPwPQRmD4C0__AUs_dqadHxLM_ceNVQvUHXlxl5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2575131446</pqid></control><display><type>article</type><title>Deep-Learning-Based Probabilistic Estimation of Solar PV Soiling Loss</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Wenjie ; Liu, Shunqi ; Gandhi, Oktoviano ; Rodriguez-Gallegos, Carlos D. ; Quan, Hao ; Srinivasan, Dipti</creator><creatorcontrib>Zhang, Wenjie ; Liu, Shunqi ; Gandhi, Oktoviano ; Rodriguez-Gallegos, Carlos D. ; Quan, Hao ; Srinivasan, Dipti</creatorcontrib><description>Although the integration of solar photovoltaic (PV) systems is gaining widespread acceptance, the intermittency and instability of PV power generation lead to several operational challenges. PV power generation can be impacted by multiple environmental factors, such as the soiling of solar PV panels. There are some conventional methods proposed to deterministically estimate the solar power loss caused by soiling. However, the error of deterministic estimation cannot be eliminated due to the inherent volatility of solar power. Therefore, this paper proposes a probabilistic quantification method, namely SolarQRNN, to estimate the power loss by leveraging images captured by surveillance cameras. Specifically, the proposed model employs a novel quantile loss function and deep learning structures (backbone networks based on residual convolution units), which combines quantile regression and computer vision models for the first time. The proposed method has been extensively tested on a solar panel soiling image dataset. Test results indicate that SolarQRNN outperforms benchmark classification models with at least 51% improvements in evaluating metrics.</description><identifier>ISSN: 1949-3029</identifier><identifier>EISSN: 1949-3037</identifier><identifier>DOI: 10.1109/TSTE.2021.3098677</identifier><identifier>CODEN: ITSEAJ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Cameras ; Computer networks ; Computer vision ; convolutional neural network ; Convolutional neural networks ; Deep learning ; Environmental factors ; Feature extraction ; Image classification ; Machine learning ; Photovoltaic (PV) system ; Photovoltaic cells ; Photovoltaic systems ; Photovoltaics ; probabilistic estimation ; Regression analysis ; Soil testing ; Soils ; Solar energy ; Solar panels ; Solar power ; solar PV panel soiling ; Statistical analysis</subject><ispartof>IEEE transactions on sustainable energy, 2021-10, Vol.12 (4), p.2436-2444</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-7e149d06dea850ea8e26154e958e0b9f3dfc60dbcf638996f4722e1933f4ddbb3</citedby><cites>FETCH-LOGICAL-c293t-7e149d06dea850ea8e26154e958e0b9f3dfc60dbcf638996f4722e1933f4ddbb3</cites><orcidid>0000-0002-6755-3668 ; 0000-0002-7003-2986 ; 0000-0001-8723-7796 ; 0000-0002-4613-1714 ; 0000-0003-4877-3478 ; 0000-0001-5949-0268</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9492833$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9492833$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Wenjie</creatorcontrib><creatorcontrib>Liu, Shunqi</creatorcontrib><creatorcontrib>Gandhi, Oktoviano</creatorcontrib><creatorcontrib>Rodriguez-Gallegos, Carlos D.</creatorcontrib><creatorcontrib>Quan, Hao</creatorcontrib><creatorcontrib>Srinivasan, Dipti</creatorcontrib><title>Deep-Learning-Based Probabilistic Estimation of Solar PV Soiling Loss</title><title>IEEE transactions on sustainable energy</title><addtitle>TSTE</addtitle><description>Although the integration of solar photovoltaic (PV) systems is gaining widespread acceptance, the intermittency and instability of PV power generation lead to several operational challenges. PV power generation can be impacted by multiple environmental factors, such as the soiling of solar PV panels. There are some conventional methods proposed to deterministically estimate the solar power loss caused by soiling. However, the error of deterministic estimation cannot be eliminated due to the inherent volatility of solar power. Therefore, this paper proposes a probabilistic quantification method, namely SolarQRNN, to estimate the power loss by leveraging images captured by surveillance cameras. Specifically, the proposed model employs a novel quantile loss function and deep learning structures (backbone networks based on residual convolution units), which combines quantile regression and computer vision models for the first time. The proposed method has been extensively tested on a solar panel soiling image dataset. Test results indicate that SolarQRNN outperforms benchmark classification models with at least 51% improvements in evaluating metrics.</description><subject>Cameras</subject><subject>Computer networks</subject><subject>Computer vision</subject><subject>convolutional neural network</subject><subject>Convolutional neural networks</subject><subject>Deep learning</subject><subject>Environmental factors</subject><subject>Feature extraction</subject><subject>Image classification</subject><subject>Machine learning</subject><subject>Photovoltaic (PV) system</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic systems</subject><subject>Photovoltaics</subject><subject>probabilistic estimation</subject><subject>Regression analysis</subject><subject>Soil testing</subject><subject>Soils</subject><subject>Solar energy</subject><subject>Solar panels</subject><subject>Solar power</subject><subject>solar PV panel soiling</subject><subject>Statistical analysis</subject><issn>1949-3029</issn><issn>1949-3037</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EElXpByA2kVin2B7HiZdQwkOKRKUWtpYTj6tUJS52uuDvcVXUWczcxZ3XIeSW0TljVD2sV-t6zilnc6CqkmV5QSZMCZUDhfLyrLm6JrMYtzQFAEigE1I_I-7zBk0Y-mGTP5mINlsG35q23_Vx7LusTvnbjL0fMu-yld-ZkC2_kkiGYZM1PsYbcuXMLuLsv07J50u9Xrzlzcfr--KxyTuuYMxLZEJZKi2aqqApIZesEKiKCmmrHFjXSWrbzkmolJJOlJwjUwBOWNu2MCX3p7n74H8OGEe99YcwpJWaF2XBgAkhk4udXF1ItwV0eh_SB-FXM6qPwPQRmD4C0__AUs_dqadHxLM_ceNVQvUHXlxl5g</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Zhang, Wenjie</creator><creator>Liu, Shunqi</creator><creator>Gandhi, Oktoviano</creator><creator>Rodriguez-Gallegos, Carlos D.</creator><creator>Quan, Hao</creator><creator>Srinivasan, Dipti</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-6755-3668</orcidid><orcidid>https://orcid.org/0000-0002-7003-2986</orcidid><orcidid>https://orcid.org/0000-0001-8723-7796</orcidid><orcidid>https://orcid.org/0000-0002-4613-1714</orcidid><orcidid>https://orcid.org/0000-0003-4877-3478</orcidid><orcidid>https://orcid.org/0000-0001-5949-0268</orcidid></search><sort><creationdate>20211001</creationdate><title>Deep-Learning-Based Probabilistic Estimation of Solar PV Soiling Loss</title><author>Zhang, Wenjie ; Liu, Shunqi ; Gandhi, Oktoviano ; Rodriguez-Gallegos, Carlos D. ; Quan, Hao ; Srinivasan, Dipti</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-7e149d06dea850ea8e26154e958e0b9f3dfc60dbcf638996f4722e1933f4ddbb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cameras</topic><topic>Computer networks</topic><topic>Computer vision</topic><topic>convolutional neural network</topic><topic>Convolutional neural networks</topic><topic>Deep learning</topic><topic>Environmental factors</topic><topic>Feature extraction</topic><topic>Image classification</topic><topic>Machine learning</topic><topic>Photovoltaic (PV) system</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic systems</topic><topic>Photovoltaics</topic><topic>probabilistic estimation</topic><topic>Regression analysis</topic><topic>Soil testing</topic><topic>Soils</topic><topic>Solar energy</topic><topic>Solar panels</topic><topic>Solar power</topic><topic>solar PV panel soiling</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Wenjie</creatorcontrib><creatorcontrib>Liu, Shunqi</creatorcontrib><creatorcontrib>Gandhi, Oktoviano</creatorcontrib><creatorcontrib>Rodriguez-Gallegos, Carlos D.</creatorcontrib><creatorcontrib>Quan, Hao</creatorcontrib><creatorcontrib>Srinivasan, Dipti</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>IEEE transactions on sustainable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Wenjie</au><au>Liu, Shunqi</au><au>Gandhi, Oktoviano</au><au>Rodriguez-Gallegos, Carlos D.</au><au>Quan, Hao</au><au>Srinivasan, Dipti</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep-Learning-Based Probabilistic Estimation of Solar PV Soiling Loss</atitle><jtitle>IEEE transactions on sustainable energy</jtitle><stitle>TSTE</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>12</volume><issue>4</issue><spage>2436</spage><epage>2444</epage><pages>2436-2444</pages><issn>1949-3029</issn><eissn>1949-3037</eissn><coden>ITSEAJ</coden><abstract>Although the integration of solar photovoltaic (PV) systems is gaining widespread acceptance, the intermittency and instability of PV power generation lead to several operational challenges. PV power generation can be impacted by multiple environmental factors, such as the soiling of solar PV panels. There are some conventional methods proposed to deterministically estimate the solar power loss caused by soiling. However, the error of deterministic estimation cannot be eliminated due to the inherent volatility of solar power. Therefore, this paper proposes a probabilistic quantification method, namely SolarQRNN, to estimate the power loss by leveraging images captured by surveillance cameras. Specifically, the proposed model employs a novel quantile loss function and deep learning structures (backbone networks based on residual convolution units), which combines quantile regression and computer vision models for the first time. The proposed method has been extensively tested on a solar panel soiling image dataset. Test results indicate that SolarQRNN outperforms benchmark classification models with at least 51% improvements in evaluating metrics.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSTE.2021.3098677</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6755-3668</orcidid><orcidid>https://orcid.org/0000-0002-7003-2986</orcidid><orcidid>https://orcid.org/0000-0001-8723-7796</orcidid><orcidid>https://orcid.org/0000-0002-4613-1714</orcidid><orcidid>https://orcid.org/0000-0003-4877-3478</orcidid><orcidid>https://orcid.org/0000-0001-5949-0268</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1949-3029 |
ispartof | IEEE transactions on sustainable energy, 2021-10, Vol.12 (4), p.2436-2444 |
issn | 1949-3029 1949-3037 |
language | eng |
recordid | cdi_proquest_journals_2575131446 |
source | IEEE Electronic Library (IEL) |
subjects | Cameras Computer networks Computer vision convolutional neural network Convolutional neural networks Deep learning Environmental factors Feature extraction Image classification Machine learning Photovoltaic (PV) system Photovoltaic cells Photovoltaic systems Photovoltaics probabilistic estimation Regression analysis Soil testing Soils Solar energy Solar panels Solar power solar PV panel soiling Statistical analysis |
title | Deep-Learning-Based Probabilistic Estimation of Solar PV Soiling Loss |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T19%3A52%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep-Learning-Based%20Probabilistic%20Estimation%20of%20Solar%20PV%20Soiling%20Loss&rft.jtitle=IEEE%20transactions%20on%20sustainable%20energy&rft.au=Zhang,%20Wenjie&rft.date=2021-10-01&rft.volume=12&rft.issue=4&rft.spage=2436&rft.epage=2444&rft.pages=2436-2444&rft.issn=1949-3029&rft.eissn=1949-3037&rft.coden=ITSEAJ&rft_id=info:doi/10.1109/TSTE.2021.3098677&rft_dat=%3Cproquest_RIE%3E2575131446%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2575131446&rft_id=info:pmid/&rft_ieee_id=9492833&rfr_iscdi=true |