Deep-Learning-Based Probabilistic Estimation of Solar PV Soiling Loss

Although the integration of solar photovoltaic (PV) systems is gaining widespread acceptance, the intermittency and instability of PV power generation lead to several operational challenges. PV power generation can be impacted by multiple environmental factors, such as the soiling of solar PV panels...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on sustainable energy 2021-10, Vol.12 (4), p.2436-2444
Hauptverfasser: Zhang, Wenjie, Liu, Shunqi, Gandhi, Oktoviano, Rodriguez-Gallegos, Carlos D., Quan, Hao, Srinivasan, Dipti
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2444
container_issue 4
container_start_page 2436
container_title IEEE transactions on sustainable energy
container_volume 12
creator Zhang, Wenjie
Liu, Shunqi
Gandhi, Oktoviano
Rodriguez-Gallegos, Carlos D.
Quan, Hao
Srinivasan, Dipti
description Although the integration of solar photovoltaic (PV) systems is gaining widespread acceptance, the intermittency and instability of PV power generation lead to several operational challenges. PV power generation can be impacted by multiple environmental factors, such as the soiling of solar PV panels. There are some conventional methods proposed to deterministically estimate the solar power loss caused by soiling. However, the error of deterministic estimation cannot be eliminated due to the inherent volatility of solar power. Therefore, this paper proposes a probabilistic quantification method, namely SolarQRNN, to estimate the power loss by leveraging images captured by surveillance cameras. Specifically, the proposed model employs a novel quantile loss function and deep learning structures (backbone networks based on residual convolution units), which combines quantile regression and computer vision models for the first time. The proposed method has been extensively tested on a solar panel soiling image dataset. Test results indicate that SolarQRNN outperforms benchmark classification models with at least 51% improvements in evaluating metrics.
doi_str_mv 10.1109/TSTE.2021.3098677
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2575131446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9492833</ieee_id><sourcerecordid>2575131446</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-7e149d06dea850ea8e26154e958e0b9f3dfc60dbcf638996f4722e1933f4ddbb3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EElXpByA2kVin2B7HiZdQwkOKRKUWtpYTj6tUJS52uuDvcVXUWczcxZ3XIeSW0TljVD2sV-t6zilnc6CqkmV5QSZMCZUDhfLyrLm6JrMYtzQFAEigE1I_I-7zBk0Y-mGTP5mINlsG35q23_Vx7LusTvnbjL0fMu-yld-ZkC2_kkiGYZM1PsYbcuXMLuLsv07J50u9Xrzlzcfr--KxyTuuYMxLZEJZKi2aqqApIZesEKiKCmmrHFjXSWrbzkmolJJOlJwjUwBOWNu2MCX3p7n74H8OGEe99YcwpJWaF2XBgAkhk4udXF1ItwV0eh_SB-FXM6qPwPQRmD4C0__AUs_dqadHxLM_ceNVQvUHXlxl5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2575131446</pqid></control><display><type>article</type><title>Deep-Learning-Based Probabilistic Estimation of Solar PV Soiling Loss</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Wenjie ; Liu, Shunqi ; Gandhi, Oktoviano ; Rodriguez-Gallegos, Carlos D. ; Quan, Hao ; Srinivasan, Dipti</creator><creatorcontrib>Zhang, Wenjie ; Liu, Shunqi ; Gandhi, Oktoviano ; Rodriguez-Gallegos, Carlos D. ; Quan, Hao ; Srinivasan, Dipti</creatorcontrib><description>Although the integration of solar photovoltaic (PV) systems is gaining widespread acceptance, the intermittency and instability of PV power generation lead to several operational challenges. PV power generation can be impacted by multiple environmental factors, such as the soiling of solar PV panels. There are some conventional methods proposed to deterministically estimate the solar power loss caused by soiling. However, the error of deterministic estimation cannot be eliminated due to the inherent volatility of solar power. Therefore, this paper proposes a probabilistic quantification method, namely SolarQRNN, to estimate the power loss by leveraging images captured by surveillance cameras. Specifically, the proposed model employs a novel quantile loss function and deep learning structures (backbone networks based on residual convolution units), which combines quantile regression and computer vision models for the first time. The proposed method has been extensively tested on a solar panel soiling image dataset. Test results indicate that SolarQRNN outperforms benchmark classification models with at least 51% improvements in evaluating metrics.</description><identifier>ISSN: 1949-3029</identifier><identifier>EISSN: 1949-3037</identifier><identifier>DOI: 10.1109/TSTE.2021.3098677</identifier><identifier>CODEN: ITSEAJ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Cameras ; Computer networks ; Computer vision ; convolutional neural network ; Convolutional neural networks ; Deep learning ; Environmental factors ; Feature extraction ; Image classification ; Machine learning ; Photovoltaic (PV) system ; Photovoltaic cells ; Photovoltaic systems ; Photovoltaics ; probabilistic estimation ; Regression analysis ; Soil testing ; Soils ; Solar energy ; Solar panels ; Solar power ; solar PV panel soiling ; Statistical analysis</subject><ispartof>IEEE transactions on sustainable energy, 2021-10, Vol.12 (4), p.2436-2444</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-7e149d06dea850ea8e26154e958e0b9f3dfc60dbcf638996f4722e1933f4ddbb3</citedby><cites>FETCH-LOGICAL-c293t-7e149d06dea850ea8e26154e958e0b9f3dfc60dbcf638996f4722e1933f4ddbb3</cites><orcidid>0000-0002-6755-3668 ; 0000-0002-7003-2986 ; 0000-0001-8723-7796 ; 0000-0002-4613-1714 ; 0000-0003-4877-3478 ; 0000-0001-5949-0268</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9492833$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9492833$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Wenjie</creatorcontrib><creatorcontrib>Liu, Shunqi</creatorcontrib><creatorcontrib>Gandhi, Oktoviano</creatorcontrib><creatorcontrib>Rodriguez-Gallegos, Carlos D.</creatorcontrib><creatorcontrib>Quan, Hao</creatorcontrib><creatorcontrib>Srinivasan, Dipti</creatorcontrib><title>Deep-Learning-Based Probabilistic Estimation of Solar PV Soiling Loss</title><title>IEEE transactions on sustainable energy</title><addtitle>TSTE</addtitle><description>Although the integration of solar photovoltaic (PV) systems is gaining widespread acceptance, the intermittency and instability of PV power generation lead to several operational challenges. PV power generation can be impacted by multiple environmental factors, such as the soiling of solar PV panels. There are some conventional methods proposed to deterministically estimate the solar power loss caused by soiling. However, the error of deterministic estimation cannot be eliminated due to the inherent volatility of solar power. Therefore, this paper proposes a probabilistic quantification method, namely SolarQRNN, to estimate the power loss by leveraging images captured by surveillance cameras. Specifically, the proposed model employs a novel quantile loss function and deep learning structures (backbone networks based on residual convolution units), which combines quantile regression and computer vision models for the first time. The proposed method has been extensively tested on a solar panel soiling image dataset. Test results indicate that SolarQRNN outperforms benchmark classification models with at least 51% improvements in evaluating metrics.</description><subject>Cameras</subject><subject>Computer networks</subject><subject>Computer vision</subject><subject>convolutional neural network</subject><subject>Convolutional neural networks</subject><subject>Deep learning</subject><subject>Environmental factors</subject><subject>Feature extraction</subject><subject>Image classification</subject><subject>Machine learning</subject><subject>Photovoltaic (PV) system</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic systems</subject><subject>Photovoltaics</subject><subject>probabilistic estimation</subject><subject>Regression analysis</subject><subject>Soil testing</subject><subject>Soils</subject><subject>Solar energy</subject><subject>Solar panels</subject><subject>Solar power</subject><subject>solar PV panel soiling</subject><subject>Statistical analysis</subject><issn>1949-3029</issn><issn>1949-3037</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EElXpByA2kVin2B7HiZdQwkOKRKUWtpYTj6tUJS52uuDvcVXUWczcxZ3XIeSW0TljVD2sV-t6zilnc6CqkmV5QSZMCZUDhfLyrLm6JrMYtzQFAEigE1I_I-7zBk0Y-mGTP5mINlsG35q23_Vx7LusTvnbjL0fMu-yld-ZkC2_kkiGYZM1PsYbcuXMLuLsv07J50u9Xrzlzcfr--KxyTuuYMxLZEJZKi2aqqApIZesEKiKCmmrHFjXSWrbzkmolJJOlJwjUwBOWNu2MCX3p7n74H8OGEe99YcwpJWaF2XBgAkhk4udXF1ItwV0eh_SB-FXM6qPwPQRmD4C0__AUs_dqadHxLM_ceNVQvUHXlxl5g</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Zhang, Wenjie</creator><creator>Liu, Shunqi</creator><creator>Gandhi, Oktoviano</creator><creator>Rodriguez-Gallegos, Carlos D.</creator><creator>Quan, Hao</creator><creator>Srinivasan, Dipti</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-6755-3668</orcidid><orcidid>https://orcid.org/0000-0002-7003-2986</orcidid><orcidid>https://orcid.org/0000-0001-8723-7796</orcidid><orcidid>https://orcid.org/0000-0002-4613-1714</orcidid><orcidid>https://orcid.org/0000-0003-4877-3478</orcidid><orcidid>https://orcid.org/0000-0001-5949-0268</orcidid></search><sort><creationdate>20211001</creationdate><title>Deep-Learning-Based Probabilistic Estimation of Solar PV Soiling Loss</title><author>Zhang, Wenjie ; Liu, Shunqi ; Gandhi, Oktoviano ; Rodriguez-Gallegos, Carlos D. ; Quan, Hao ; Srinivasan, Dipti</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-7e149d06dea850ea8e26154e958e0b9f3dfc60dbcf638996f4722e1933f4ddbb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cameras</topic><topic>Computer networks</topic><topic>Computer vision</topic><topic>convolutional neural network</topic><topic>Convolutional neural networks</topic><topic>Deep learning</topic><topic>Environmental factors</topic><topic>Feature extraction</topic><topic>Image classification</topic><topic>Machine learning</topic><topic>Photovoltaic (PV) system</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic systems</topic><topic>Photovoltaics</topic><topic>probabilistic estimation</topic><topic>Regression analysis</topic><topic>Soil testing</topic><topic>Soils</topic><topic>Solar energy</topic><topic>Solar panels</topic><topic>Solar power</topic><topic>solar PV panel soiling</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Wenjie</creatorcontrib><creatorcontrib>Liu, Shunqi</creatorcontrib><creatorcontrib>Gandhi, Oktoviano</creatorcontrib><creatorcontrib>Rodriguez-Gallegos, Carlos D.</creatorcontrib><creatorcontrib>Quan, Hao</creatorcontrib><creatorcontrib>Srinivasan, Dipti</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>IEEE transactions on sustainable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Wenjie</au><au>Liu, Shunqi</au><au>Gandhi, Oktoviano</au><au>Rodriguez-Gallegos, Carlos D.</au><au>Quan, Hao</au><au>Srinivasan, Dipti</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep-Learning-Based Probabilistic Estimation of Solar PV Soiling Loss</atitle><jtitle>IEEE transactions on sustainable energy</jtitle><stitle>TSTE</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>12</volume><issue>4</issue><spage>2436</spage><epage>2444</epage><pages>2436-2444</pages><issn>1949-3029</issn><eissn>1949-3037</eissn><coden>ITSEAJ</coden><abstract>Although the integration of solar photovoltaic (PV) systems is gaining widespread acceptance, the intermittency and instability of PV power generation lead to several operational challenges. PV power generation can be impacted by multiple environmental factors, such as the soiling of solar PV panels. There are some conventional methods proposed to deterministically estimate the solar power loss caused by soiling. However, the error of deterministic estimation cannot be eliminated due to the inherent volatility of solar power. Therefore, this paper proposes a probabilistic quantification method, namely SolarQRNN, to estimate the power loss by leveraging images captured by surveillance cameras. Specifically, the proposed model employs a novel quantile loss function and deep learning structures (backbone networks based on residual convolution units), which combines quantile regression and computer vision models for the first time. The proposed method has been extensively tested on a solar panel soiling image dataset. Test results indicate that SolarQRNN outperforms benchmark classification models with at least 51% improvements in evaluating metrics.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSTE.2021.3098677</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6755-3668</orcidid><orcidid>https://orcid.org/0000-0002-7003-2986</orcidid><orcidid>https://orcid.org/0000-0001-8723-7796</orcidid><orcidid>https://orcid.org/0000-0002-4613-1714</orcidid><orcidid>https://orcid.org/0000-0003-4877-3478</orcidid><orcidid>https://orcid.org/0000-0001-5949-0268</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1949-3029
ispartof IEEE transactions on sustainable energy, 2021-10, Vol.12 (4), p.2436-2444
issn 1949-3029
1949-3037
language eng
recordid cdi_proquest_journals_2575131446
source IEEE Electronic Library (IEL)
subjects Cameras
Computer networks
Computer vision
convolutional neural network
Convolutional neural networks
Deep learning
Environmental factors
Feature extraction
Image classification
Machine learning
Photovoltaic (PV) system
Photovoltaic cells
Photovoltaic systems
Photovoltaics
probabilistic estimation
Regression analysis
Soil testing
Soils
Solar energy
Solar panels
Solar power
solar PV panel soiling
Statistical analysis
title Deep-Learning-Based Probabilistic Estimation of Solar PV Soiling Loss
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T19%3A52%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep-Learning-Based%20Probabilistic%20Estimation%20of%20Solar%20PV%20Soiling%20Loss&rft.jtitle=IEEE%20transactions%20on%20sustainable%20energy&rft.au=Zhang,%20Wenjie&rft.date=2021-10-01&rft.volume=12&rft.issue=4&rft.spage=2436&rft.epage=2444&rft.pages=2436-2444&rft.issn=1949-3029&rft.eissn=1949-3037&rft.coden=ITSEAJ&rft_id=info:doi/10.1109/TSTE.2021.3098677&rft_dat=%3Cproquest_RIE%3E2575131446%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2575131446&rft_id=info:pmid/&rft_ieee_id=9492833&rfr_iscdi=true