Compressing Gradients by Exploiting Temporal Correlation in Momentum-SGD
An increasing bottleneck in decentralized optimization is communication. Bigger models and growing datasets mean that decentralization of computation is important and that the amount of information exchanged is quickly growing. While compression techniques have been introduced to cope with the latte...
Gespeichert in:
Veröffentlicht in: | IEEE journal on selected areas in information theory 2021-09, Vol.2 (3), p.970-986 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 986 |
---|---|
container_issue | 3 |
container_start_page | 970 |
container_title | IEEE journal on selected areas in information theory |
container_volume | 2 |
creator | Adikari, Tharindu B. Draper, Stark C. |
description | An increasing bottleneck in decentralized optimization is communication. Bigger models and growing datasets mean that decentralization of computation is important and that the amount of information exchanged is quickly growing. While compression techniques have been introduced to cope with the latter, none has considered leveraging the temporal correlations that exist in consecutive vector updates. An important example is distributed momentum-SGD where temporal correlation is enhanced by the low-pass-filtering effect of applying momentum. In this paper we design and analyze compression methods that exploit temporal correlation in systems both with and without error-feedback. Experiments with the ImageNet dataset demonstrate that our proposed methods offer significant reduction in the rate of communication at only a negligible increase in computation complexity. We further analyze the convergence of SGD when compression is applied with error-feedback. In the literature, convergence guarantees are developed only for compressors that provide error-bounds point-wise, i.e., for each input to the compressor. In contrast, many important codes (e.g., rate-distortion codes) provide error-bounds only in expectation and thus provide a more general guarantee. In this paper we prove the convergence of SGD under an expected error assumption by establishing a bound for the minimum gradient norm. |
doi_str_mv | 10.1109/JSAIT.2021.3103494 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2575128706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9511618</ieee_id><sourcerecordid>2575128706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c210t-26c1c3265b9800d8915ef231a0f5c6955f2dae7f43ee99152273f8c16e4053013</originalsourceid><addsrcrecordid>eNpNkMFOwkAQhjdGEwnyAnpp4rk4M9vttkeCCBiMB_C8KWVqStpu3S2JvL1FiPE0k5nvn0k-Ie4RxoiQPr2uJ8vNmIBwLBFklEZXYkBxhGGiNVz_62_FyPs9ABBhpBM9EIuprVvH3pfNZzB32a7kpvPB9hjMvtvKlt1pvuG6tS6rgql1jqusK20TlE3wZuuePtThev58J26KrPI8utSh-HiZbaaLcPU-X04nqzAnhC6kOMdcUqy2aQKwS1JUXJDEDAqVx6lSBe0y1kUkmdN-SaRlkeQYcwRKAsqheDzfbZ39OrDvzN4eXNO_NKS0Qko0xD1FZyp31nvHhWldWWfuaBDMSZr5lWZO0sxFWh96OIdKZv4LpAoxxkT-AIUJZrs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2575128706</pqid></control><display><type>article</type><title>Compressing Gradients by Exploiting Temporal Correlation in Momentum-SGD</title><source>IEEE Xplore</source><creator>Adikari, Tharindu B. ; Draper, Stark C.</creator><creatorcontrib>Adikari, Tharindu B. ; Draper, Stark C.</creatorcontrib><description>An increasing bottleneck in decentralized optimization is communication. Bigger models and growing datasets mean that decentralization of computation is important and that the amount of information exchanged is quickly growing. While compression techniques have been introduced to cope with the latter, none has considered leveraging the temporal correlations that exist in consecutive vector updates. An important example is distributed momentum-SGD where temporal correlation is enhanced by the low-pass-filtering effect of applying momentum. In this paper we design and analyze compression methods that exploit temporal correlation in systems both with and without error-feedback. Experiments with the ImageNet dataset demonstrate that our proposed methods offer significant reduction in the rate of communication at only a negligible increase in computation complexity. We further analyze the convergence of SGD when compression is applied with error-feedback. In the literature, convergence guarantees are developed only for compressors that provide error-bounds point-wise, i.e., for each input to the compressor. In contrast, many important codes (e.g., rate-distortion codes) provide error-bounds only in expectation and thus provide a more general guarantee. In this paper we prove the convergence of SGD under an expected error assumption by establishing a bound for the minimum gradient norm.</description><identifier>ISSN: 2641-8770</identifier><identifier>EISSN: 2641-8770</identifier><identifier>DOI: 10.1109/JSAIT.2021.3103494</identifier><identifier>CODEN: IJSTL5</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Compressing ; Compressors ; Computation ; Computational modeling ; Convergence ; Correlation ; Datasets ; Distributed optimization ; Feedback ; gradient compression ; Momentum ; momentum SGD ; Optimization ; Prediction algorithms ; Predictive coding ; Quantization (signal) ; rate distortion</subject><ispartof>IEEE journal on selected areas in information theory, 2021-09, Vol.2 (3), p.970-986</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c210t-26c1c3265b9800d8915ef231a0f5c6955f2dae7f43ee99152273f8c16e4053013</citedby><cites>FETCH-LOGICAL-c210t-26c1c3265b9800d8915ef231a0f5c6955f2dae7f43ee99152273f8c16e4053013</cites><orcidid>0000-0002-7628-7568 ; 0000-0001-8100-5599</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9511618$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9511618$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Adikari, Tharindu B.</creatorcontrib><creatorcontrib>Draper, Stark C.</creatorcontrib><title>Compressing Gradients by Exploiting Temporal Correlation in Momentum-SGD</title><title>IEEE journal on selected areas in information theory</title><addtitle>JSAIT</addtitle><description>An increasing bottleneck in decentralized optimization is communication. Bigger models and growing datasets mean that decentralization of computation is important and that the amount of information exchanged is quickly growing. While compression techniques have been introduced to cope with the latter, none has considered leveraging the temporal correlations that exist in consecutive vector updates. An important example is distributed momentum-SGD where temporal correlation is enhanced by the low-pass-filtering effect of applying momentum. In this paper we design and analyze compression methods that exploit temporal correlation in systems both with and without error-feedback. Experiments with the ImageNet dataset demonstrate that our proposed methods offer significant reduction in the rate of communication at only a negligible increase in computation complexity. We further analyze the convergence of SGD when compression is applied with error-feedback. In the literature, convergence guarantees are developed only for compressors that provide error-bounds point-wise, i.e., for each input to the compressor. In contrast, many important codes (e.g., rate-distortion codes) provide error-bounds only in expectation and thus provide a more general guarantee. In this paper we prove the convergence of SGD under an expected error assumption by establishing a bound for the minimum gradient norm.</description><subject>Compressing</subject><subject>Compressors</subject><subject>Computation</subject><subject>Computational modeling</subject><subject>Convergence</subject><subject>Correlation</subject><subject>Datasets</subject><subject>Distributed optimization</subject><subject>Feedback</subject><subject>gradient compression</subject><subject>Momentum</subject><subject>momentum SGD</subject><subject>Optimization</subject><subject>Prediction algorithms</subject><subject>Predictive coding</subject><subject>Quantization (signal)</subject><subject>rate distortion</subject><issn>2641-8770</issn><issn>2641-8770</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMFOwkAQhjdGEwnyAnpp4rk4M9vttkeCCBiMB_C8KWVqStpu3S2JvL1FiPE0k5nvn0k-Ie4RxoiQPr2uJ8vNmIBwLBFklEZXYkBxhGGiNVz_62_FyPs9ABBhpBM9EIuprVvH3pfNZzB32a7kpvPB9hjMvtvKlt1pvuG6tS6rgql1jqusK20TlE3wZuuePtThev58J26KrPI8utSh-HiZbaaLcPU-X04nqzAnhC6kOMdcUqy2aQKwS1JUXJDEDAqVx6lSBe0y1kUkmdN-SaRlkeQYcwRKAsqheDzfbZ39OrDvzN4eXNO_NKS0Qko0xD1FZyp31nvHhWldWWfuaBDMSZr5lWZO0sxFWh96OIdKZv4LpAoxxkT-AIUJZrs</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Adikari, Tharindu B.</creator><creator>Draper, Stark C.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7628-7568</orcidid><orcidid>https://orcid.org/0000-0001-8100-5599</orcidid></search><sort><creationdate>20210901</creationdate><title>Compressing Gradients by Exploiting Temporal Correlation in Momentum-SGD</title><author>Adikari, Tharindu B. ; Draper, Stark C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c210t-26c1c3265b9800d8915ef231a0f5c6955f2dae7f43ee99152273f8c16e4053013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Compressing</topic><topic>Compressors</topic><topic>Computation</topic><topic>Computational modeling</topic><topic>Convergence</topic><topic>Correlation</topic><topic>Datasets</topic><topic>Distributed optimization</topic><topic>Feedback</topic><topic>gradient compression</topic><topic>Momentum</topic><topic>momentum SGD</topic><topic>Optimization</topic><topic>Prediction algorithms</topic><topic>Predictive coding</topic><topic>Quantization (signal)</topic><topic>rate distortion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adikari, Tharindu B.</creatorcontrib><creatorcontrib>Draper, Stark C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE journal on selected areas in information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Adikari, Tharindu B.</au><au>Draper, Stark C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compressing Gradients by Exploiting Temporal Correlation in Momentum-SGD</atitle><jtitle>IEEE journal on selected areas in information theory</jtitle><stitle>JSAIT</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>2</volume><issue>3</issue><spage>970</spage><epage>986</epage><pages>970-986</pages><issn>2641-8770</issn><eissn>2641-8770</eissn><coden>IJSTL5</coden><abstract>An increasing bottleneck in decentralized optimization is communication. Bigger models and growing datasets mean that decentralization of computation is important and that the amount of information exchanged is quickly growing. While compression techniques have been introduced to cope with the latter, none has considered leveraging the temporal correlations that exist in consecutive vector updates. An important example is distributed momentum-SGD where temporal correlation is enhanced by the low-pass-filtering effect of applying momentum. In this paper we design and analyze compression methods that exploit temporal correlation in systems both with and without error-feedback. Experiments with the ImageNet dataset demonstrate that our proposed methods offer significant reduction in the rate of communication at only a negligible increase in computation complexity. We further analyze the convergence of SGD when compression is applied with error-feedback. In the literature, convergence guarantees are developed only for compressors that provide error-bounds point-wise, i.e., for each input to the compressor. In contrast, many important codes (e.g., rate-distortion codes) provide error-bounds only in expectation and thus provide a more general guarantee. In this paper we prove the convergence of SGD under an expected error assumption by establishing a bound for the minimum gradient norm.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSAIT.2021.3103494</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-7628-7568</orcidid><orcidid>https://orcid.org/0000-0001-8100-5599</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2641-8770 |
ispartof | IEEE journal on selected areas in information theory, 2021-09, Vol.2 (3), p.970-986 |
issn | 2641-8770 2641-8770 |
language | eng |
recordid | cdi_proquest_journals_2575128706 |
source | IEEE Xplore |
subjects | Compressing Compressors Computation Computational modeling Convergence Correlation Datasets Distributed optimization Feedback gradient compression Momentum momentum SGD Optimization Prediction algorithms Predictive coding Quantization (signal) rate distortion |
title | Compressing Gradients by Exploiting Temporal Correlation in Momentum-SGD |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T19%3A42%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compressing%20Gradients%20by%20Exploiting%20Temporal%20Correlation%20in%20Momentum-SGD&rft.jtitle=IEEE%20journal%20on%20selected%20areas%20in%20information%20theory&rft.au=Adikari,%20Tharindu%20B.&rft.date=2021-09-01&rft.volume=2&rft.issue=3&rft.spage=970&rft.epage=986&rft.pages=970-986&rft.issn=2641-8770&rft.eissn=2641-8770&rft.coden=IJSTL5&rft_id=info:doi/10.1109/JSAIT.2021.3103494&rft_dat=%3Cproquest_RIE%3E2575128706%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2575128706&rft_id=info:pmid/&rft_ieee_id=9511618&rfr_iscdi=true |