Bringing flexibility to giant magnetoresistive sensors directly grown onto commercial polymeric foils

•Linear spin-valve sensors deposited and fabricated directly on commercial polymeric substrates.•Study of the impact of substrate roughness and magnetoelastic anisotropy on final sensors performance.•Modified macrospin model used to understand in detail the magnetic behavior. The emergence of augmen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetism and magnetic materials 2021-11, Vol.538, p.168153, Article 168153
Hauptverfasser: Ferreira, M.V., Mouro, J., Silva, M., Silva, A., Cardoso, S., Leitao, D.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 168153
container_title Journal of magnetism and magnetic materials
container_volume 538
creator Ferreira, M.V.
Mouro, J.
Silva, M.
Silva, A.
Cardoso, S.
Leitao, D.C.
description •Linear spin-valve sensors deposited and fabricated directly on commercial polymeric substrates.•Study of the impact of substrate roughness and magnetoelastic anisotropy on final sensors performance.•Modified macrospin model used to understand in detail the magnetic behavior. The emergence of augmented reality, robotics and point-of-care biosensors has pushed forward the frontiers of compliant sensors with mechanical resilience and capability of being arbitrarily shaped upon demand. Here, we report exchange-biased spin valve structures directly fabricated on 25 μm thick commercial polymeric substrates. Linear electrical response with low coercivity was demonstrated for sensors grown on polymers. Despite the higher roughness of polymers ≃0.75 nm, a Néel coupling field comparable to that of samples grown on conventional SiO2 substrates was shown. Nevertheless, significant changes in the linear range of polymeric samples were observed, together with changes in the shift of the transfer curve. The measurements also indicate deviations from fully orthogonal magnetization orientation achieved in patterned linear sensors. Such results were ascribed to the presence of a non-negligible magnetostrictive component, most likely due to residual mechanical stress in the sensor's free- and pinned-layers. To support the study, a macrospin model was developed, considering the magnetoelastic anisotropy, to address in particular the impact of mechanical stress on final sensor output.
doi_str_mv 10.1016/j.jmmm.2021.168153
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2575097900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304885321004297</els_id><sourcerecordid>2575097900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c258t-54beec0c007520963debfddb547d1d4134c94169a589e36549540c1925023f9c3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouH78AU8Bz62TJmkb8KKLX7DgRc-hTaclpW3WJLu6_94u9SwMzBzeZ2Z4CLlhkDJg-V2f9uM4phlkLGV5ySQ_IStWFjwRRZ6fkhVwEElZSn5OLkLoAYCJMl8RfPR26uai7YA_traDjQcaHe1sNUU6Vt2E0XkMNkS7RxpwCs4H2liPJg4H2nn3PVE3zYhx44je2GqgWzcc5tka2jo7hCty1lZDwOu_fkk-n58-1q_J5v3lbf2wSUwmy5hIUSMaMACFzEDlvMG6bZpaiqJhjWBcGCVYripZKuS5FEoKMExlEjLeKsMvye2yd-vd1w5D1L3b-Wk-qTNZSFCFAphT2ZIy3oXgsdVbb8fKHzQDfdSpe33UqY869aJzhu4XCOf_9xa9DsbiZHAxoRtn_8N_ATHVf7k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2575097900</pqid></control><display><type>article</type><title>Bringing flexibility to giant magnetoresistive sensors directly grown onto commercial polymeric foils</title><source>Elsevier ScienceDirect Journals</source><creator>Ferreira, M.V. ; Mouro, J. ; Silva, M. ; Silva, A. ; Cardoso, S. ; Leitao, D.C.</creator><creatorcontrib>Ferreira, M.V. ; Mouro, J. ; Silva, M. ; Silva, A. ; Cardoso, S. ; Leitao, D.C.</creatorcontrib><description>•Linear spin-valve sensors deposited and fabricated directly on commercial polymeric substrates.•Study of the impact of substrate roughness and magnetoelastic anisotropy on final sensors performance.•Modified macrospin model used to understand in detail the magnetic behavior. The emergence of augmented reality, robotics and point-of-care biosensors has pushed forward the frontiers of compliant sensors with mechanical resilience and capability of being arbitrarily shaped upon demand. Here, we report exchange-biased spin valve structures directly fabricated on 25 μm thick commercial polymeric substrates. Linear electrical response with low coercivity was demonstrated for sensors grown on polymers. Despite the higher roughness of polymers ≃0.75 nm, a Néel coupling field comparable to that of samples grown on conventional SiO2 substrates was shown. Nevertheless, significant changes in the linear range of polymeric samples were observed, together with changes in the shift of the transfer curve. The measurements also indicate deviations from fully orthogonal magnetization orientation achieved in patterned linear sensors. Such results were ascribed to the presence of a non-negligible magnetostrictive component, most likely due to residual mechanical stress in the sensor's free- and pinned-layers. To support the study, a macrospin model was developed, considering the magnetoelastic anisotropy, to address in particular the impact of mechanical stress on final sensor output.</description><identifier>ISSN: 0304-8853</identifier><identifier>EISSN: 1873-4766</identifier><identifier>DOI: 10.1016/j.jmmm.2021.168153</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Anisotropy ; Augmented reality ; Automation ; Biosensors ; Coercivity ; Foils ; Magnetic sensors ; Magnetoresistivity ; Magnetostriction ; Manufacturing engineering ; Polymeric substrates ; Polymers ; Robotics ; Sensors ; Silicon dioxide ; Spin valves ; Substrates ; Thin-films roughness</subject><ispartof>Journal of magnetism and magnetic materials, 2021-11, Vol.538, p.168153, Article 168153</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Nov 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c258t-54beec0c007520963debfddb547d1d4134c94169a589e36549540c1925023f9c3</citedby><cites>FETCH-LOGICAL-c258t-54beec0c007520963debfddb547d1d4134c94169a589e36549540c1925023f9c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmmm.2021.168153$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Ferreira, M.V.</creatorcontrib><creatorcontrib>Mouro, J.</creatorcontrib><creatorcontrib>Silva, M.</creatorcontrib><creatorcontrib>Silva, A.</creatorcontrib><creatorcontrib>Cardoso, S.</creatorcontrib><creatorcontrib>Leitao, D.C.</creatorcontrib><title>Bringing flexibility to giant magnetoresistive sensors directly grown onto commercial polymeric foils</title><title>Journal of magnetism and magnetic materials</title><description>•Linear spin-valve sensors deposited and fabricated directly on commercial polymeric substrates.•Study of the impact of substrate roughness and magnetoelastic anisotropy on final sensors performance.•Modified macrospin model used to understand in detail the magnetic behavior. The emergence of augmented reality, robotics and point-of-care biosensors has pushed forward the frontiers of compliant sensors with mechanical resilience and capability of being arbitrarily shaped upon demand. Here, we report exchange-biased spin valve structures directly fabricated on 25 μm thick commercial polymeric substrates. Linear electrical response with low coercivity was demonstrated for sensors grown on polymers. Despite the higher roughness of polymers ≃0.75 nm, a Néel coupling field comparable to that of samples grown on conventional SiO2 substrates was shown. Nevertheless, significant changes in the linear range of polymeric samples were observed, together with changes in the shift of the transfer curve. The measurements also indicate deviations from fully orthogonal magnetization orientation achieved in patterned linear sensors. Such results were ascribed to the presence of a non-negligible magnetostrictive component, most likely due to residual mechanical stress in the sensor's free- and pinned-layers. To support the study, a macrospin model was developed, considering the magnetoelastic anisotropy, to address in particular the impact of mechanical stress on final sensor output.</description><subject>Anisotropy</subject><subject>Augmented reality</subject><subject>Automation</subject><subject>Biosensors</subject><subject>Coercivity</subject><subject>Foils</subject><subject>Magnetic sensors</subject><subject>Magnetoresistivity</subject><subject>Magnetostriction</subject><subject>Manufacturing engineering</subject><subject>Polymeric substrates</subject><subject>Polymers</subject><subject>Robotics</subject><subject>Sensors</subject><subject>Silicon dioxide</subject><subject>Spin valves</subject><subject>Substrates</subject><subject>Thin-films roughness</subject><issn>0304-8853</issn><issn>1873-4766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouH78AU8Bz62TJmkb8KKLX7DgRc-hTaclpW3WJLu6_94u9SwMzBzeZ2Z4CLlhkDJg-V2f9uM4phlkLGV5ySQ_IStWFjwRRZ6fkhVwEElZSn5OLkLoAYCJMl8RfPR26uai7YA_traDjQcaHe1sNUU6Vt2E0XkMNkS7RxpwCs4H2liPJg4H2nn3PVE3zYhx44je2GqgWzcc5tka2jo7hCty1lZDwOu_fkk-n58-1q_J5v3lbf2wSUwmy5hIUSMaMACFzEDlvMG6bZpaiqJhjWBcGCVYripZKuS5FEoKMExlEjLeKsMvye2yd-vd1w5D1L3b-Wk-qTNZSFCFAphT2ZIy3oXgsdVbb8fKHzQDfdSpe33UqY869aJzhu4XCOf_9xa9DsbiZHAxoRtn_8N_ATHVf7k</recordid><startdate>20211115</startdate><enddate>20211115</enddate><creator>Ferreira, M.V.</creator><creator>Mouro, J.</creator><creator>Silva, M.</creator><creator>Silva, A.</creator><creator>Cardoso, S.</creator><creator>Leitao, D.C.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20211115</creationdate><title>Bringing flexibility to giant magnetoresistive sensors directly grown onto commercial polymeric foils</title><author>Ferreira, M.V. ; Mouro, J. ; Silva, M. ; Silva, A. ; Cardoso, S. ; Leitao, D.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c258t-54beec0c007520963debfddb547d1d4134c94169a589e36549540c1925023f9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anisotropy</topic><topic>Augmented reality</topic><topic>Automation</topic><topic>Biosensors</topic><topic>Coercivity</topic><topic>Foils</topic><topic>Magnetic sensors</topic><topic>Magnetoresistivity</topic><topic>Magnetostriction</topic><topic>Manufacturing engineering</topic><topic>Polymeric substrates</topic><topic>Polymers</topic><topic>Robotics</topic><topic>Sensors</topic><topic>Silicon dioxide</topic><topic>Spin valves</topic><topic>Substrates</topic><topic>Thin-films roughness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferreira, M.V.</creatorcontrib><creatorcontrib>Mouro, J.</creatorcontrib><creatorcontrib>Silva, M.</creatorcontrib><creatorcontrib>Silva, A.</creatorcontrib><creatorcontrib>Cardoso, S.</creatorcontrib><creatorcontrib>Leitao, D.C.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of magnetism and magnetic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferreira, M.V.</au><au>Mouro, J.</au><au>Silva, M.</au><au>Silva, A.</au><au>Cardoso, S.</au><au>Leitao, D.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bringing flexibility to giant magnetoresistive sensors directly grown onto commercial polymeric foils</atitle><jtitle>Journal of magnetism and magnetic materials</jtitle><date>2021-11-15</date><risdate>2021</risdate><volume>538</volume><spage>168153</spage><pages>168153-</pages><artnum>168153</artnum><issn>0304-8853</issn><eissn>1873-4766</eissn><abstract>•Linear spin-valve sensors deposited and fabricated directly on commercial polymeric substrates.•Study of the impact of substrate roughness and magnetoelastic anisotropy on final sensors performance.•Modified macrospin model used to understand in detail the magnetic behavior. The emergence of augmented reality, robotics and point-of-care biosensors has pushed forward the frontiers of compliant sensors with mechanical resilience and capability of being arbitrarily shaped upon demand. Here, we report exchange-biased spin valve structures directly fabricated on 25 μm thick commercial polymeric substrates. Linear electrical response with low coercivity was demonstrated for sensors grown on polymers. Despite the higher roughness of polymers ≃0.75 nm, a Néel coupling field comparable to that of samples grown on conventional SiO2 substrates was shown. Nevertheless, significant changes in the linear range of polymeric samples were observed, together with changes in the shift of the transfer curve. The measurements also indicate deviations from fully orthogonal magnetization orientation achieved in patterned linear sensors. Such results were ascribed to the presence of a non-negligible magnetostrictive component, most likely due to residual mechanical stress in the sensor's free- and pinned-layers. To support the study, a macrospin model was developed, considering the magnetoelastic anisotropy, to address in particular the impact of mechanical stress on final sensor output.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jmmm.2021.168153</doi></addata></record>
fulltext fulltext
identifier ISSN: 0304-8853
ispartof Journal of magnetism and magnetic materials, 2021-11, Vol.538, p.168153, Article 168153
issn 0304-8853
1873-4766
language eng
recordid cdi_proquest_journals_2575097900
source Elsevier ScienceDirect Journals
subjects Anisotropy
Augmented reality
Automation
Biosensors
Coercivity
Foils
Magnetic sensors
Magnetoresistivity
Magnetostriction
Manufacturing engineering
Polymeric substrates
Polymers
Robotics
Sensors
Silicon dioxide
Spin valves
Substrates
Thin-films roughness
title Bringing flexibility to giant magnetoresistive sensors directly grown onto commercial polymeric foils
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A15%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bringing%20flexibility%20to%20giant%20magnetoresistive%20sensors%20directly%20grown%20onto%20commercial%20polymeric%20foils&rft.jtitle=Journal%20of%20magnetism%20and%20magnetic%20materials&rft.au=Ferreira,%20M.V.&rft.date=2021-11-15&rft.volume=538&rft.spage=168153&rft.pages=168153-&rft.artnum=168153&rft.issn=0304-8853&rft.eissn=1873-4766&rft_id=info:doi/10.1016/j.jmmm.2021.168153&rft_dat=%3Cproquest_cross%3E2575097900%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2575097900&rft_id=info:pmid/&rft_els_id=S0304885321004297&rfr_iscdi=true