Bringing flexibility to giant magnetoresistive sensors directly grown onto commercial polymeric foils
•Linear spin-valve sensors deposited and fabricated directly on commercial polymeric substrates.•Study of the impact of substrate roughness and magnetoelastic anisotropy on final sensors performance.•Modified macrospin model used to understand in detail the magnetic behavior. The emergence of augmen...
Gespeichert in:
Veröffentlicht in: | Journal of magnetism and magnetic materials 2021-11, Vol.538, p.168153, Article 168153 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 168153 |
container_title | Journal of magnetism and magnetic materials |
container_volume | 538 |
creator | Ferreira, M.V. Mouro, J. Silva, M. Silva, A. Cardoso, S. Leitao, D.C. |
description | •Linear spin-valve sensors deposited and fabricated directly on commercial polymeric substrates.•Study of the impact of substrate roughness and magnetoelastic anisotropy on final sensors performance.•Modified macrospin model used to understand in detail the magnetic behavior.
The emergence of augmented reality, robotics and point-of-care biosensors has pushed forward the frontiers of compliant sensors with mechanical resilience and capability of being arbitrarily shaped upon demand. Here, we report exchange-biased spin valve structures directly fabricated on 25 μm thick commercial polymeric substrates. Linear electrical response with low coercivity was demonstrated for sensors grown on polymers. Despite the higher roughness of polymers ≃0.75 nm, a Néel coupling field comparable to that of samples grown on conventional SiO2 substrates was shown. Nevertheless, significant changes in the linear range of polymeric samples were observed, together with changes in the shift of the transfer curve. The measurements also indicate deviations from fully orthogonal magnetization orientation achieved in patterned linear sensors. Such results were ascribed to the presence of a non-negligible magnetostrictive component, most likely due to residual mechanical stress in the sensor's free- and pinned-layers. To support the study, a macrospin model was developed, considering the magnetoelastic anisotropy, to address in particular the impact of mechanical stress on final sensor output. |
doi_str_mv | 10.1016/j.jmmm.2021.168153 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2575097900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304885321004297</els_id><sourcerecordid>2575097900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c258t-54beec0c007520963debfddb547d1d4134c94169a589e36549540c1925023f9c3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouH78AU8Bz62TJmkb8KKLX7DgRc-hTaclpW3WJLu6_94u9SwMzBzeZ2Z4CLlhkDJg-V2f9uM4phlkLGV5ySQ_IStWFjwRRZ6fkhVwEElZSn5OLkLoAYCJMl8RfPR26uai7YA_traDjQcaHe1sNUU6Vt2E0XkMNkS7RxpwCs4H2liPJg4H2nn3PVE3zYhx44je2GqgWzcc5tka2jo7hCty1lZDwOu_fkk-n58-1q_J5v3lbf2wSUwmy5hIUSMaMACFzEDlvMG6bZpaiqJhjWBcGCVYripZKuS5FEoKMExlEjLeKsMvye2yd-vd1w5D1L3b-Wk-qTNZSFCFAphT2ZIy3oXgsdVbb8fKHzQDfdSpe33UqY869aJzhu4XCOf_9xa9DsbiZHAxoRtn_8N_ATHVf7k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2575097900</pqid></control><display><type>article</type><title>Bringing flexibility to giant magnetoresistive sensors directly grown onto commercial polymeric foils</title><source>Elsevier ScienceDirect Journals</source><creator>Ferreira, M.V. ; Mouro, J. ; Silva, M. ; Silva, A. ; Cardoso, S. ; Leitao, D.C.</creator><creatorcontrib>Ferreira, M.V. ; Mouro, J. ; Silva, M. ; Silva, A. ; Cardoso, S. ; Leitao, D.C.</creatorcontrib><description>•Linear spin-valve sensors deposited and fabricated directly on commercial polymeric substrates.•Study of the impact of substrate roughness and magnetoelastic anisotropy on final sensors performance.•Modified macrospin model used to understand in detail the magnetic behavior.
The emergence of augmented reality, robotics and point-of-care biosensors has pushed forward the frontiers of compliant sensors with mechanical resilience and capability of being arbitrarily shaped upon demand. Here, we report exchange-biased spin valve structures directly fabricated on 25 μm thick commercial polymeric substrates. Linear electrical response with low coercivity was demonstrated for sensors grown on polymers. Despite the higher roughness of polymers ≃0.75 nm, a Néel coupling field comparable to that of samples grown on conventional SiO2 substrates was shown. Nevertheless, significant changes in the linear range of polymeric samples were observed, together with changes in the shift of the transfer curve. The measurements also indicate deviations from fully orthogonal magnetization orientation achieved in patterned linear sensors. Such results were ascribed to the presence of a non-negligible magnetostrictive component, most likely due to residual mechanical stress in the sensor's free- and pinned-layers. To support the study, a macrospin model was developed, considering the magnetoelastic anisotropy, to address in particular the impact of mechanical stress on final sensor output.</description><identifier>ISSN: 0304-8853</identifier><identifier>EISSN: 1873-4766</identifier><identifier>DOI: 10.1016/j.jmmm.2021.168153</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Anisotropy ; Augmented reality ; Automation ; Biosensors ; Coercivity ; Foils ; Magnetic sensors ; Magnetoresistivity ; Magnetostriction ; Manufacturing engineering ; Polymeric substrates ; Polymers ; Robotics ; Sensors ; Silicon dioxide ; Spin valves ; Substrates ; Thin-films roughness</subject><ispartof>Journal of magnetism and magnetic materials, 2021-11, Vol.538, p.168153, Article 168153</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Nov 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c258t-54beec0c007520963debfddb547d1d4134c94169a589e36549540c1925023f9c3</citedby><cites>FETCH-LOGICAL-c258t-54beec0c007520963debfddb547d1d4134c94169a589e36549540c1925023f9c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmmm.2021.168153$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Ferreira, M.V.</creatorcontrib><creatorcontrib>Mouro, J.</creatorcontrib><creatorcontrib>Silva, M.</creatorcontrib><creatorcontrib>Silva, A.</creatorcontrib><creatorcontrib>Cardoso, S.</creatorcontrib><creatorcontrib>Leitao, D.C.</creatorcontrib><title>Bringing flexibility to giant magnetoresistive sensors directly grown onto commercial polymeric foils</title><title>Journal of magnetism and magnetic materials</title><description>•Linear spin-valve sensors deposited and fabricated directly on commercial polymeric substrates.•Study of the impact of substrate roughness and magnetoelastic anisotropy on final sensors performance.•Modified macrospin model used to understand in detail the magnetic behavior.
The emergence of augmented reality, robotics and point-of-care biosensors has pushed forward the frontiers of compliant sensors with mechanical resilience and capability of being arbitrarily shaped upon demand. Here, we report exchange-biased spin valve structures directly fabricated on 25 μm thick commercial polymeric substrates. Linear electrical response with low coercivity was demonstrated for sensors grown on polymers. Despite the higher roughness of polymers ≃0.75 nm, a Néel coupling field comparable to that of samples grown on conventional SiO2 substrates was shown. Nevertheless, significant changes in the linear range of polymeric samples were observed, together with changes in the shift of the transfer curve. The measurements also indicate deviations from fully orthogonal magnetization orientation achieved in patterned linear sensors. Such results were ascribed to the presence of a non-negligible magnetostrictive component, most likely due to residual mechanical stress in the sensor's free- and pinned-layers. To support the study, a macrospin model was developed, considering the magnetoelastic anisotropy, to address in particular the impact of mechanical stress on final sensor output.</description><subject>Anisotropy</subject><subject>Augmented reality</subject><subject>Automation</subject><subject>Biosensors</subject><subject>Coercivity</subject><subject>Foils</subject><subject>Magnetic sensors</subject><subject>Magnetoresistivity</subject><subject>Magnetostriction</subject><subject>Manufacturing engineering</subject><subject>Polymeric substrates</subject><subject>Polymers</subject><subject>Robotics</subject><subject>Sensors</subject><subject>Silicon dioxide</subject><subject>Spin valves</subject><subject>Substrates</subject><subject>Thin-films roughness</subject><issn>0304-8853</issn><issn>1873-4766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouH78AU8Bz62TJmkb8KKLX7DgRc-hTaclpW3WJLu6_94u9SwMzBzeZ2Z4CLlhkDJg-V2f9uM4phlkLGV5ySQ_IStWFjwRRZ6fkhVwEElZSn5OLkLoAYCJMl8RfPR26uai7YA_traDjQcaHe1sNUU6Vt2E0XkMNkS7RxpwCs4H2liPJg4H2nn3PVE3zYhx44je2GqgWzcc5tka2jo7hCty1lZDwOu_fkk-n58-1q_J5v3lbf2wSUwmy5hIUSMaMACFzEDlvMG6bZpaiqJhjWBcGCVYripZKuS5FEoKMExlEjLeKsMvye2yd-vd1w5D1L3b-Wk-qTNZSFCFAphT2ZIy3oXgsdVbb8fKHzQDfdSpe33UqY869aJzhu4XCOf_9xa9DsbiZHAxoRtn_8N_ATHVf7k</recordid><startdate>20211115</startdate><enddate>20211115</enddate><creator>Ferreira, M.V.</creator><creator>Mouro, J.</creator><creator>Silva, M.</creator><creator>Silva, A.</creator><creator>Cardoso, S.</creator><creator>Leitao, D.C.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20211115</creationdate><title>Bringing flexibility to giant magnetoresistive sensors directly grown onto commercial polymeric foils</title><author>Ferreira, M.V. ; Mouro, J. ; Silva, M. ; Silva, A. ; Cardoso, S. ; Leitao, D.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c258t-54beec0c007520963debfddb547d1d4134c94169a589e36549540c1925023f9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anisotropy</topic><topic>Augmented reality</topic><topic>Automation</topic><topic>Biosensors</topic><topic>Coercivity</topic><topic>Foils</topic><topic>Magnetic sensors</topic><topic>Magnetoresistivity</topic><topic>Magnetostriction</topic><topic>Manufacturing engineering</topic><topic>Polymeric substrates</topic><topic>Polymers</topic><topic>Robotics</topic><topic>Sensors</topic><topic>Silicon dioxide</topic><topic>Spin valves</topic><topic>Substrates</topic><topic>Thin-films roughness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferreira, M.V.</creatorcontrib><creatorcontrib>Mouro, J.</creatorcontrib><creatorcontrib>Silva, M.</creatorcontrib><creatorcontrib>Silva, A.</creatorcontrib><creatorcontrib>Cardoso, S.</creatorcontrib><creatorcontrib>Leitao, D.C.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of magnetism and magnetic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferreira, M.V.</au><au>Mouro, J.</au><au>Silva, M.</au><au>Silva, A.</au><au>Cardoso, S.</au><au>Leitao, D.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bringing flexibility to giant magnetoresistive sensors directly grown onto commercial polymeric foils</atitle><jtitle>Journal of magnetism and magnetic materials</jtitle><date>2021-11-15</date><risdate>2021</risdate><volume>538</volume><spage>168153</spage><pages>168153-</pages><artnum>168153</artnum><issn>0304-8853</issn><eissn>1873-4766</eissn><abstract>•Linear spin-valve sensors deposited and fabricated directly on commercial polymeric substrates.•Study of the impact of substrate roughness and magnetoelastic anisotropy on final sensors performance.•Modified macrospin model used to understand in detail the magnetic behavior.
The emergence of augmented reality, robotics and point-of-care biosensors has pushed forward the frontiers of compliant sensors with mechanical resilience and capability of being arbitrarily shaped upon demand. Here, we report exchange-biased spin valve structures directly fabricated on 25 μm thick commercial polymeric substrates. Linear electrical response with low coercivity was demonstrated for sensors grown on polymers. Despite the higher roughness of polymers ≃0.75 nm, a Néel coupling field comparable to that of samples grown on conventional SiO2 substrates was shown. Nevertheless, significant changes in the linear range of polymeric samples were observed, together with changes in the shift of the transfer curve. The measurements also indicate deviations from fully orthogonal magnetization orientation achieved in patterned linear sensors. Such results were ascribed to the presence of a non-negligible magnetostrictive component, most likely due to residual mechanical stress in the sensor's free- and pinned-layers. To support the study, a macrospin model was developed, considering the magnetoelastic anisotropy, to address in particular the impact of mechanical stress on final sensor output.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jmmm.2021.168153</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-8853 |
ispartof | Journal of magnetism and magnetic materials, 2021-11, Vol.538, p.168153, Article 168153 |
issn | 0304-8853 1873-4766 |
language | eng |
recordid | cdi_proquest_journals_2575097900 |
source | Elsevier ScienceDirect Journals |
subjects | Anisotropy Augmented reality Automation Biosensors Coercivity Foils Magnetic sensors Magnetoresistivity Magnetostriction Manufacturing engineering Polymeric substrates Polymers Robotics Sensors Silicon dioxide Spin valves Substrates Thin-films roughness |
title | Bringing flexibility to giant magnetoresistive sensors directly grown onto commercial polymeric foils |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A15%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bringing%20flexibility%20to%20giant%20magnetoresistive%20sensors%20directly%20grown%20onto%20commercial%20polymeric%20foils&rft.jtitle=Journal%20of%20magnetism%20and%20magnetic%20materials&rft.au=Ferreira,%20M.V.&rft.date=2021-11-15&rft.volume=538&rft.spage=168153&rft.pages=168153-&rft.artnum=168153&rft.issn=0304-8853&rft.eissn=1873-4766&rft_id=info:doi/10.1016/j.jmmm.2021.168153&rft_dat=%3Cproquest_cross%3E2575097900%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2575097900&rft_id=info:pmid/&rft_els_id=S0304885321004297&rfr_iscdi=true |