Development of novel biocomposites based on the clean production of microbial cellulose from dairy waste (sour whey)
This work explores the production of kombucha‐derived bacterial cellulose (KBC) from sour whey via the fermentation method using Komagatacibacter xylinus. The biosynthesis process was optimized by design of experiments and the results displayed highest KBC yield at 1000 ml/L sour whey waste, 87.39 g...
Gespeichert in:
Veröffentlicht in: | Journal of applied polymer science 2022-01, Vol.139 (1), p.n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Journal of applied polymer science |
container_volume | 139 |
creator | Nguyen, Hau Trung Ngwabebhoh, Fahanwi Asabuwa Saha, Nabanita Zandraa, Oyunchimeg Saha, Tomas Saha, Petr |
description | This work explores the production of kombucha‐derived bacterial cellulose (KBC) from sour whey via the fermentation method using Komagatacibacter xylinus. The biosynthesis process was optimized by design of experiments and the results displayed highest KBC yield at 1000 ml/L sour whey waste, 87.39 g/L cane sugar, 6 g/L black tea, and 78.91 ml/L bacteria volume under 21 days culture period at 30°C. Optimum fermentation batch efficiency was achieved in large scale with cultured medium depths of 0.5 cm and low‐residual bacteria suspension volume of 72.31 ± 8.74 ml. The obtained KBC membranes were analyzed by SEM, FTIR, XRD, and TGA. The obtained results show no significant differences for all prepared KBC samples when compared to pristine bacterial cellulose from standard Hestrin and Schramm (HS) medium. In addition, the optimized KBC was investigated as a suitable bio‐filler in the preparation of biocomposite materials. The prepared biocomposites as leather alternative were further characterized and their mechanical tensile strength and elongation at break determined in the range of 135.61 ± 9.15 to 154.89 ± 9.09 N/mm2 and 31.06 ± 0.32 to 92.33 ± 6.91%, respectively. This model obtained depicts high‐yield production of KBC and its potential in the preparation of biocomposites. |
doi_str_mv | 10.1002/app.51433 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2575087490</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2575087490</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3323-6d0e42f769487a9411a88da6891564d2547574a4aa963e7b10f4a38b7c0f6aad3</originalsourceid><addsrcrecordid>eNp1kE1PwzAMhiMEEmNw4B9E4sIO3ZI2TZrjND6lSewA58htXa1T25SkZeq_JzCunCzbj-3XLyG3nC05Y_EK-n6ZcpEkZ2TGmVaRkHF2Tmahx6NM6_SSXHl_YIzzlMkZGR7wCxvbt9gN1Fa0syGleW0L2_bW1wN6moPHktqODnukRYPQ0d7ZciyGOhTDUFsXzuY1NLTAphkb65FWzra0hNpN9Ah-QHrv7ejocY_T4ppcVNB4vPmLc_Lx9Pi-eYm2b8-vm_U2KpIkTiJZMhRxpaQWmQItOIcsK0FmmqdSlHEqVKoECAAtE1Q5Z5WAJMtVwSoJUCZzcnfaG-R-jugHcwgaunDSxKlKWaaEZoFanKjwhPcOK9O7ugU3Gc7Mj6kmmGp-TQ3s6sQe6wan_0Gz3u1OE99IfXlr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2575087490</pqid></control><display><type>article</type><title>Development of novel biocomposites based on the clean production of microbial cellulose from dairy waste (sour whey)</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Nguyen, Hau Trung ; Ngwabebhoh, Fahanwi Asabuwa ; Saha, Nabanita ; Zandraa, Oyunchimeg ; Saha, Tomas ; Saha, Petr</creator><creatorcontrib>Nguyen, Hau Trung ; Ngwabebhoh, Fahanwi Asabuwa ; Saha, Nabanita ; Zandraa, Oyunchimeg ; Saha, Tomas ; Saha, Petr</creatorcontrib><description>This work explores the production of kombucha‐derived bacterial cellulose (KBC) from sour whey via the fermentation method using Komagatacibacter xylinus. The biosynthesis process was optimized by design of experiments and the results displayed highest KBC yield at 1000 ml/L sour whey waste, 87.39 g/L cane sugar, 6 g/L black tea, and 78.91 ml/L bacteria volume under 21 days culture period at 30°C. Optimum fermentation batch efficiency was achieved in large scale with cultured medium depths of 0.5 cm and low‐residual bacteria suspension volume of 72.31 ± 8.74 ml. The obtained KBC membranes were analyzed by SEM, FTIR, XRD, and TGA. The obtained results show no significant differences for all prepared KBC samples when compared to pristine bacterial cellulose from standard Hestrin and Schramm (HS) medium. In addition, the optimized KBC was investigated as a suitable bio‐filler in the preparation of biocomposite materials. The prepared biocomposites as leather alternative were further characterized and their mechanical tensile strength and elongation at break determined in the range of 135.61 ± 9.15 to 154.89 ± 9.09 N/mm2 and 31.06 ± 0.32 to 92.33 ± 6.91%, respectively. This model obtained depicts high‐yield production of KBC and its potential in the preparation of biocomposites.</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.51433</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Bacteria ; Biomedical materials ; Biosynthesis ; Black tea ; Cellulose ; Composite materials ; Design of experiments ; Design optimization ; Elongation ; Fermentation ; Leather ; Materials science ; Microorganisms ; microscopy ; morphology ; phase behavior ; Polymers ; Tensile strength ; Whey</subject><ispartof>Journal of applied polymer science, 2022-01, Vol.139 (1), p.n/a</ispartof><rights>2021 Wiley Periodicals LLC.</rights><rights>2022 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3323-6d0e42f769487a9411a88da6891564d2547574a4aa963e7b10f4a38b7c0f6aad3</citedby><cites>FETCH-LOGICAL-c3323-6d0e42f769487a9411a88da6891564d2547574a4aa963e7b10f4a38b7c0f6aad3</cites><orcidid>0000-0002-7549-2260 ; 0000-0002-1492-1869</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.51433$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.51433$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Nguyen, Hau Trung</creatorcontrib><creatorcontrib>Ngwabebhoh, Fahanwi Asabuwa</creatorcontrib><creatorcontrib>Saha, Nabanita</creatorcontrib><creatorcontrib>Zandraa, Oyunchimeg</creatorcontrib><creatorcontrib>Saha, Tomas</creatorcontrib><creatorcontrib>Saha, Petr</creatorcontrib><title>Development of novel biocomposites based on the clean production of microbial cellulose from dairy waste (sour whey)</title><title>Journal of applied polymer science</title><description>This work explores the production of kombucha‐derived bacterial cellulose (KBC) from sour whey via the fermentation method using Komagatacibacter xylinus. The biosynthesis process was optimized by design of experiments and the results displayed highest KBC yield at 1000 ml/L sour whey waste, 87.39 g/L cane sugar, 6 g/L black tea, and 78.91 ml/L bacteria volume under 21 days culture period at 30°C. Optimum fermentation batch efficiency was achieved in large scale with cultured medium depths of 0.5 cm and low‐residual bacteria suspension volume of 72.31 ± 8.74 ml. The obtained KBC membranes were analyzed by SEM, FTIR, XRD, and TGA. The obtained results show no significant differences for all prepared KBC samples when compared to pristine bacterial cellulose from standard Hestrin and Schramm (HS) medium. In addition, the optimized KBC was investigated as a suitable bio‐filler in the preparation of biocomposite materials. The prepared biocomposites as leather alternative were further characterized and their mechanical tensile strength and elongation at break determined in the range of 135.61 ± 9.15 to 154.89 ± 9.09 N/mm2 and 31.06 ± 0.32 to 92.33 ± 6.91%, respectively. This model obtained depicts high‐yield production of KBC and its potential in the preparation of biocomposites.</description><subject>Bacteria</subject><subject>Biomedical materials</subject><subject>Biosynthesis</subject><subject>Black tea</subject><subject>Cellulose</subject><subject>Composite materials</subject><subject>Design of experiments</subject><subject>Design optimization</subject><subject>Elongation</subject><subject>Fermentation</subject><subject>Leather</subject><subject>Materials science</subject><subject>Microorganisms</subject><subject>microscopy</subject><subject>morphology</subject><subject>phase behavior</subject><subject>Polymers</subject><subject>Tensile strength</subject><subject>Whey</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PwzAMhiMEEmNw4B9E4sIO3ZI2TZrjND6lSewA58htXa1T25SkZeq_JzCunCzbj-3XLyG3nC05Y_EK-n6ZcpEkZ2TGmVaRkHF2Tmahx6NM6_SSXHl_YIzzlMkZGR7wCxvbt9gN1Fa0syGleW0L2_bW1wN6moPHktqODnukRYPQ0d7ZciyGOhTDUFsXzuY1NLTAphkb65FWzra0hNpN9Ah-QHrv7ejocY_T4ppcVNB4vPmLc_Lx9Pi-eYm2b8-vm_U2KpIkTiJZMhRxpaQWmQItOIcsK0FmmqdSlHEqVKoECAAtE1Q5Z5WAJMtVwSoJUCZzcnfaG-R-jugHcwgaunDSxKlKWaaEZoFanKjwhPcOK9O7ugU3Gc7Mj6kmmGp-TQ3s6sQe6wan_0Gz3u1OE99IfXlr</recordid><startdate>20220105</startdate><enddate>20220105</enddate><creator>Nguyen, Hau Trung</creator><creator>Ngwabebhoh, Fahanwi Asabuwa</creator><creator>Saha, Nabanita</creator><creator>Zandraa, Oyunchimeg</creator><creator>Saha, Tomas</creator><creator>Saha, Petr</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-7549-2260</orcidid><orcidid>https://orcid.org/0000-0002-1492-1869</orcidid></search><sort><creationdate>20220105</creationdate><title>Development of novel biocomposites based on the clean production of microbial cellulose from dairy waste (sour whey)</title><author>Nguyen, Hau Trung ; Ngwabebhoh, Fahanwi Asabuwa ; Saha, Nabanita ; Zandraa, Oyunchimeg ; Saha, Tomas ; Saha, Petr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3323-6d0e42f769487a9411a88da6891564d2547574a4aa963e7b10f4a38b7c0f6aad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bacteria</topic><topic>Biomedical materials</topic><topic>Biosynthesis</topic><topic>Black tea</topic><topic>Cellulose</topic><topic>Composite materials</topic><topic>Design of experiments</topic><topic>Design optimization</topic><topic>Elongation</topic><topic>Fermentation</topic><topic>Leather</topic><topic>Materials science</topic><topic>Microorganisms</topic><topic>microscopy</topic><topic>morphology</topic><topic>phase behavior</topic><topic>Polymers</topic><topic>Tensile strength</topic><topic>Whey</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Hau Trung</creatorcontrib><creatorcontrib>Ngwabebhoh, Fahanwi Asabuwa</creatorcontrib><creatorcontrib>Saha, Nabanita</creatorcontrib><creatorcontrib>Zandraa, Oyunchimeg</creatorcontrib><creatorcontrib>Saha, Tomas</creatorcontrib><creatorcontrib>Saha, Petr</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Hau Trung</au><au>Ngwabebhoh, Fahanwi Asabuwa</au><au>Saha, Nabanita</au><au>Zandraa, Oyunchimeg</au><au>Saha, Tomas</au><au>Saha, Petr</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of novel biocomposites based on the clean production of microbial cellulose from dairy waste (sour whey)</atitle><jtitle>Journal of applied polymer science</jtitle><date>2022-01-05</date><risdate>2022</risdate><volume>139</volume><issue>1</issue><epage>n/a</epage><issn>0021-8995</issn><eissn>1097-4628</eissn><abstract>This work explores the production of kombucha‐derived bacterial cellulose (KBC) from sour whey via the fermentation method using Komagatacibacter xylinus. The biosynthesis process was optimized by design of experiments and the results displayed highest KBC yield at 1000 ml/L sour whey waste, 87.39 g/L cane sugar, 6 g/L black tea, and 78.91 ml/L bacteria volume under 21 days culture period at 30°C. Optimum fermentation batch efficiency was achieved in large scale with cultured medium depths of 0.5 cm and low‐residual bacteria suspension volume of 72.31 ± 8.74 ml. The obtained KBC membranes were analyzed by SEM, FTIR, XRD, and TGA. The obtained results show no significant differences for all prepared KBC samples when compared to pristine bacterial cellulose from standard Hestrin and Schramm (HS) medium. In addition, the optimized KBC was investigated as a suitable bio‐filler in the preparation of biocomposite materials. The prepared biocomposites as leather alternative were further characterized and their mechanical tensile strength and elongation at break determined in the range of 135.61 ± 9.15 to 154.89 ± 9.09 N/mm2 and 31.06 ± 0.32 to 92.33 ± 6.91%, respectively. This model obtained depicts high‐yield production of KBC and its potential in the preparation of biocomposites.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/app.51433</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-7549-2260</orcidid><orcidid>https://orcid.org/0000-0002-1492-1869</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8995 |
ispartof | Journal of applied polymer science, 2022-01, Vol.139 (1), p.n/a |
issn | 0021-8995 1097-4628 |
language | eng |
recordid | cdi_proquest_journals_2575087490 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Bacteria Biomedical materials Biosynthesis Black tea Cellulose Composite materials Design of experiments Design optimization Elongation Fermentation Leather Materials science Microorganisms microscopy morphology phase behavior Polymers Tensile strength Whey |
title | Development of novel biocomposites based on the clean production of microbial cellulose from dairy waste (sour whey) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T22%3A31%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20novel%20biocomposites%20based%20on%20the%20clean%20production%20of%20microbial%20cellulose%20from%20dairy%20waste%20(sour%20whey)&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Nguyen,%20Hau%20Trung&rft.date=2022-01-05&rft.volume=139&rft.issue=1&rft.epage=n/a&rft.issn=0021-8995&rft.eissn=1097-4628&rft_id=info:doi/10.1002/app.51433&rft_dat=%3Cproquest_cross%3E2575087490%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2575087490&rft_id=info:pmid/&rfr_iscdi=true |