Development of novel biocomposites based on the clean production of microbial cellulose from dairy waste (sour whey)

This work explores the production of kombucha‐derived bacterial cellulose (KBC) from sour whey via the fermentation method using Komagatacibacter xylinus. The biosynthesis process was optimized by design of experiments and the results displayed highest KBC yield at 1000 ml/L sour whey waste, 87.39 g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2022-01, Vol.139 (1), p.n/a
Hauptverfasser: Nguyen, Hau Trung, Ngwabebhoh, Fahanwi Asabuwa, Saha, Nabanita, Zandraa, Oyunchimeg, Saha, Tomas, Saha, Petr
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page
container_title Journal of applied polymer science
container_volume 139
creator Nguyen, Hau Trung
Ngwabebhoh, Fahanwi Asabuwa
Saha, Nabanita
Zandraa, Oyunchimeg
Saha, Tomas
Saha, Petr
description This work explores the production of kombucha‐derived bacterial cellulose (KBC) from sour whey via the fermentation method using Komagatacibacter xylinus. The biosynthesis process was optimized by design of experiments and the results displayed highest KBC yield at 1000 ml/L sour whey waste, 87.39 g/L cane sugar, 6 g/L black tea, and 78.91 ml/L bacteria volume under 21 days culture period at 30°C. Optimum fermentation batch efficiency was achieved in large scale with cultured medium depths of 0.5 cm and low‐residual bacteria suspension volume of 72.31 ± 8.74 ml. The obtained KBC membranes were analyzed by SEM, FTIR, XRD, and TGA. The obtained results show no significant differences for all prepared KBC samples when compared to pristine bacterial cellulose from standard Hestrin and Schramm (HS) medium. In addition, the optimized KBC was investigated as a suitable bio‐filler in the preparation of biocomposite materials. The prepared biocomposites as leather alternative were further characterized and their mechanical tensile strength and elongation at break determined in the range of 135.61 ± 9.15 to 154.89 ± 9.09 N/mm2 and 31.06 ± 0.32 to 92.33 ± 6.91%, respectively. This model obtained depicts high‐yield production of KBC and its potential in the preparation of biocomposites.
doi_str_mv 10.1002/app.51433
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2575087490</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2575087490</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3323-6d0e42f769487a9411a88da6891564d2547574a4aa963e7b10f4a38b7c0f6aad3</originalsourceid><addsrcrecordid>eNp1kE1PwzAMhiMEEmNw4B9E4sIO3ZI2TZrjND6lSewA58htXa1T25SkZeq_JzCunCzbj-3XLyG3nC05Y_EK-n6ZcpEkZ2TGmVaRkHF2Tmahx6NM6_SSXHl_YIzzlMkZGR7wCxvbt9gN1Fa0syGleW0L2_bW1wN6moPHktqODnukRYPQ0d7ZciyGOhTDUFsXzuY1NLTAphkb65FWzra0hNpN9Ah-QHrv7ejocY_T4ppcVNB4vPmLc_Lx9Pi-eYm2b8-vm_U2KpIkTiJZMhRxpaQWmQItOIcsK0FmmqdSlHEqVKoECAAtE1Q5Z5WAJMtVwSoJUCZzcnfaG-R-jugHcwgaunDSxKlKWaaEZoFanKjwhPcOK9O7ugU3Gc7Mj6kmmGp-TQ3s6sQe6wan_0Gz3u1OE99IfXlr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2575087490</pqid></control><display><type>article</type><title>Development of novel biocomposites based on the clean production of microbial cellulose from dairy waste (sour whey)</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Nguyen, Hau Trung ; Ngwabebhoh, Fahanwi Asabuwa ; Saha, Nabanita ; Zandraa, Oyunchimeg ; Saha, Tomas ; Saha, Petr</creator><creatorcontrib>Nguyen, Hau Trung ; Ngwabebhoh, Fahanwi Asabuwa ; Saha, Nabanita ; Zandraa, Oyunchimeg ; Saha, Tomas ; Saha, Petr</creatorcontrib><description>This work explores the production of kombucha‐derived bacterial cellulose (KBC) from sour whey via the fermentation method using Komagatacibacter xylinus. The biosynthesis process was optimized by design of experiments and the results displayed highest KBC yield at 1000 ml/L sour whey waste, 87.39 g/L cane sugar, 6 g/L black tea, and 78.91 ml/L bacteria volume under 21 days culture period at 30°C. Optimum fermentation batch efficiency was achieved in large scale with cultured medium depths of 0.5 cm and low‐residual bacteria suspension volume of 72.31 ± 8.74 ml. The obtained KBC membranes were analyzed by SEM, FTIR, XRD, and TGA. The obtained results show no significant differences for all prepared KBC samples when compared to pristine bacterial cellulose from standard Hestrin and Schramm (HS) medium. In addition, the optimized KBC was investigated as a suitable bio‐filler in the preparation of biocomposite materials. The prepared biocomposites as leather alternative were further characterized and their mechanical tensile strength and elongation at break determined in the range of 135.61 ± 9.15 to 154.89 ± 9.09 N/mm2 and 31.06 ± 0.32 to 92.33 ± 6.91%, respectively. This model obtained depicts high‐yield production of KBC and its potential in the preparation of biocomposites.</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.51433</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Bacteria ; Biomedical materials ; Biosynthesis ; Black tea ; Cellulose ; Composite materials ; Design of experiments ; Design optimization ; Elongation ; Fermentation ; Leather ; Materials science ; Microorganisms ; microscopy ; morphology ; phase behavior ; Polymers ; Tensile strength ; Whey</subject><ispartof>Journal of applied polymer science, 2022-01, Vol.139 (1), p.n/a</ispartof><rights>2021 Wiley Periodicals LLC.</rights><rights>2022 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3323-6d0e42f769487a9411a88da6891564d2547574a4aa963e7b10f4a38b7c0f6aad3</citedby><cites>FETCH-LOGICAL-c3323-6d0e42f769487a9411a88da6891564d2547574a4aa963e7b10f4a38b7c0f6aad3</cites><orcidid>0000-0002-7549-2260 ; 0000-0002-1492-1869</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.51433$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.51433$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Nguyen, Hau Trung</creatorcontrib><creatorcontrib>Ngwabebhoh, Fahanwi Asabuwa</creatorcontrib><creatorcontrib>Saha, Nabanita</creatorcontrib><creatorcontrib>Zandraa, Oyunchimeg</creatorcontrib><creatorcontrib>Saha, Tomas</creatorcontrib><creatorcontrib>Saha, Petr</creatorcontrib><title>Development of novel biocomposites based on the clean production of microbial cellulose from dairy waste (sour whey)</title><title>Journal of applied polymer science</title><description>This work explores the production of kombucha‐derived bacterial cellulose (KBC) from sour whey via the fermentation method using Komagatacibacter xylinus. The biosynthesis process was optimized by design of experiments and the results displayed highest KBC yield at 1000 ml/L sour whey waste, 87.39 g/L cane sugar, 6 g/L black tea, and 78.91 ml/L bacteria volume under 21 days culture period at 30°C. Optimum fermentation batch efficiency was achieved in large scale with cultured medium depths of 0.5 cm and low‐residual bacteria suspension volume of 72.31 ± 8.74 ml. The obtained KBC membranes were analyzed by SEM, FTIR, XRD, and TGA. The obtained results show no significant differences for all prepared KBC samples when compared to pristine bacterial cellulose from standard Hestrin and Schramm (HS) medium. In addition, the optimized KBC was investigated as a suitable bio‐filler in the preparation of biocomposite materials. The prepared biocomposites as leather alternative were further characterized and their mechanical tensile strength and elongation at break determined in the range of 135.61 ± 9.15 to 154.89 ± 9.09 N/mm2 and 31.06 ± 0.32 to 92.33 ± 6.91%, respectively. This model obtained depicts high‐yield production of KBC and its potential in the preparation of biocomposites.</description><subject>Bacteria</subject><subject>Biomedical materials</subject><subject>Biosynthesis</subject><subject>Black tea</subject><subject>Cellulose</subject><subject>Composite materials</subject><subject>Design of experiments</subject><subject>Design optimization</subject><subject>Elongation</subject><subject>Fermentation</subject><subject>Leather</subject><subject>Materials science</subject><subject>Microorganisms</subject><subject>microscopy</subject><subject>morphology</subject><subject>phase behavior</subject><subject>Polymers</subject><subject>Tensile strength</subject><subject>Whey</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PwzAMhiMEEmNw4B9E4sIO3ZI2TZrjND6lSewA58htXa1T25SkZeq_JzCunCzbj-3XLyG3nC05Y_EK-n6ZcpEkZ2TGmVaRkHF2Tmahx6NM6_SSXHl_YIzzlMkZGR7wCxvbt9gN1Fa0syGleW0L2_bW1wN6moPHktqODnukRYPQ0d7ZciyGOhTDUFsXzuY1NLTAphkb65FWzra0hNpN9Ah-QHrv7ejocY_T4ppcVNB4vPmLc_Lx9Pi-eYm2b8-vm_U2KpIkTiJZMhRxpaQWmQItOIcsK0FmmqdSlHEqVKoECAAtE1Q5Z5WAJMtVwSoJUCZzcnfaG-R-jugHcwgaunDSxKlKWaaEZoFanKjwhPcOK9O7ugU3Gc7Mj6kmmGp-TQ3s6sQe6wan_0Gz3u1OE99IfXlr</recordid><startdate>20220105</startdate><enddate>20220105</enddate><creator>Nguyen, Hau Trung</creator><creator>Ngwabebhoh, Fahanwi Asabuwa</creator><creator>Saha, Nabanita</creator><creator>Zandraa, Oyunchimeg</creator><creator>Saha, Tomas</creator><creator>Saha, Petr</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-7549-2260</orcidid><orcidid>https://orcid.org/0000-0002-1492-1869</orcidid></search><sort><creationdate>20220105</creationdate><title>Development of novel biocomposites based on the clean production of microbial cellulose from dairy waste (sour whey)</title><author>Nguyen, Hau Trung ; Ngwabebhoh, Fahanwi Asabuwa ; Saha, Nabanita ; Zandraa, Oyunchimeg ; Saha, Tomas ; Saha, Petr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3323-6d0e42f769487a9411a88da6891564d2547574a4aa963e7b10f4a38b7c0f6aad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bacteria</topic><topic>Biomedical materials</topic><topic>Biosynthesis</topic><topic>Black tea</topic><topic>Cellulose</topic><topic>Composite materials</topic><topic>Design of experiments</topic><topic>Design optimization</topic><topic>Elongation</topic><topic>Fermentation</topic><topic>Leather</topic><topic>Materials science</topic><topic>Microorganisms</topic><topic>microscopy</topic><topic>morphology</topic><topic>phase behavior</topic><topic>Polymers</topic><topic>Tensile strength</topic><topic>Whey</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Hau Trung</creatorcontrib><creatorcontrib>Ngwabebhoh, Fahanwi Asabuwa</creatorcontrib><creatorcontrib>Saha, Nabanita</creatorcontrib><creatorcontrib>Zandraa, Oyunchimeg</creatorcontrib><creatorcontrib>Saha, Tomas</creatorcontrib><creatorcontrib>Saha, Petr</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Hau Trung</au><au>Ngwabebhoh, Fahanwi Asabuwa</au><au>Saha, Nabanita</au><au>Zandraa, Oyunchimeg</au><au>Saha, Tomas</au><au>Saha, Petr</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of novel biocomposites based on the clean production of microbial cellulose from dairy waste (sour whey)</atitle><jtitle>Journal of applied polymer science</jtitle><date>2022-01-05</date><risdate>2022</risdate><volume>139</volume><issue>1</issue><epage>n/a</epage><issn>0021-8995</issn><eissn>1097-4628</eissn><abstract>This work explores the production of kombucha‐derived bacterial cellulose (KBC) from sour whey via the fermentation method using Komagatacibacter xylinus. The biosynthesis process was optimized by design of experiments and the results displayed highest KBC yield at 1000 ml/L sour whey waste, 87.39 g/L cane sugar, 6 g/L black tea, and 78.91 ml/L bacteria volume under 21 days culture period at 30°C. Optimum fermentation batch efficiency was achieved in large scale with cultured medium depths of 0.5 cm and low‐residual bacteria suspension volume of 72.31 ± 8.74 ml. The obtained KBC membranes were analyzed by SEM, FTIR, XRD, and TGA. The obtained results show no significant differences for all prepared KBC samples when compared to pristine bacterial cellulose from standard Hestrin and Schramm (HS) medium. In addition, the optimized KBC was investigated as a suitable bio‐filler in the preparation of biocomposite materials. The prepared biocomposites as leather alternative were further characterized and their mechanical tensile strength and elongation at break determined in the range of 135.61 ± 9.15 to 154.89 ± 9.09 N/mm2 and 31.06 ± 0.32 to 92.33 ± 6.91%, respectively. This model obtained depicts high‐yield production of KBC and its potential in the preparation of biocomposites.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/app.51433</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-7549-2260</orcidid><orcidid>https://orcid.org/0000-0002-1492-1869</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8995
ispartof Journal of applied polymer science, 2022-01, Vol.139 (1), p.n/a
issn 0021-8995
1097-4628
language eng
recordid cdi_proquest_journals_2575087490
source Wiley Online Library Journals Frontfile Complete
subjects Bacteria
Biomedical materials
Biosynthesis
Black tea
Cellulose
Composite materials
Design of experiments
Design optimization
Elongation
Fermentation
Leather
Materials science
Microorganisms
microscopy
morphology
phase behavior
Polymers
Tensile strength
Whey
title Development of novel biocomposites based on the clean production of microbial cellulose from dairy waste (sour whey)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T22%3A31%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20novel%20biocomposites%20based%20on%20the%20clean%20production%20of%20microbial%20cellulose%20from%20dairy%20waste%20(sour%20whey)&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Nguyen,%20Hau%20Trung&rft.date=2022-01-05&rft.volume=139&rft.issue=1&rft.epage=n/a&rft.issn=0021-8995&rft.eissn=1097-4628&rft_id=info:doi/10.1002/app.51433&rft_dat=%3Cproquest_cross%3E2575087490%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2575087490&rft_id=info:pmid/&rfr_iscdi=true