On existence of an x-integral for a semi-discrete chain of hyperbolic type

A class of semi-discrete chains of the form t1x = f (x,t,t1,tx) is considered. For the given chains easily verifiable conditions for existence of x-integral of minimal order 4 are obtained.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2016-01, Vol.670 (1), p.12055
Hauptverfasser: Zheltukhin, K, Zheltukhina, N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12055
container_title Journal of physics. Conference series
container_volume 670
creator Zheltukhin, K
Zheltukhina, N
description A class of semi-discrete chains of the form t1x = f (x,t,t1,tx) is considered. For the given chains easily verifiable conditions for existence of x-integral of minimal order 4 are obtained.
doi_str_mv 10.1088/1742-6596/670/1/012055
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2574966922</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2574966922</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-c1bae9f1e1027b08fab11c5c5b723423f8b472c9b407cb2e7d27416058ba50433</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKt_QQKux0kyec1Sik8K3eg6JOmNTWlnxmQK7b93hhFdejf3wD3nXPgQuqXknhKtS6o4K6SoZSkVKWlJKCNCnKHZ7-H8V2t9ia5y3hJSDaNm6G3VYDjG3EPjAbcB2wYfi9j08JnsDoc2YYsz7GOxjtkn6AH7jY3NaN2cOkiu3UWP-0Feo4tgdxlufvYcfTw9vi9eiuXq-XXxsCx8xWRfeOos1IECJUw5ooN1lHrhhVOs4qwK2nHFfO04Ud4xUGumOJVEaGcF4VU1R3dTb5farwPk3mzbQ2qGl4YJxWspa8YGl5xcPrU5JwimS3Fv08lQYkZuZkRiRjxm4GaombgNQTYFY9v9Nf8T-gY4FW3x</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2574966922</pqid></control><display><type>article</type><title>On existence of an x-integral for a semi-discrete chain of hyperbolic type</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Zheltukhin, K ; Zheltukhina, N</creator><creatorcontrib>Zheltukhin, K ; Zheltukhina, N</creatorcontrib><description>A class of semi-discrete chains of the form t1x = f (x,t,t1,tx) is considered. For the given chains easily verifiable conditions for existence of x-integral of minimal order 4 are obtained.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/670/1/012055</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Chains ; Integrals ; Physics</subject><ispartof>Journal of physics. Conference series, 2016-01, Vol.670 (1), p.12055</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2016. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-c1bae9f1e1027b08fab11c5c5b723423f8b472c9b407cb2e7d27416058ba50433</citedby><cites>FETCH-LOGICAL-c326t-c1bae9f1e1027b08fab11c5c5b723423f8b472c9b407cb2e7d27416058ba50433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/670/1/012055/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Zheltukhin, K</creatorcontrib><creatorcontrib>Zheltukhina, N</creatorcontrib><title>On existence of an x-integral for a semi-discrete chain of hyperbolic type</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>A class of semi-discrete chains of the form t1x = f (x,t,t1,tx) is considered. For the given chains easily verifiable conditions for existence of x-integral of minimal order 4 are obtained.</description><subject>Chains</subject><subject>Integrals</subject><subject>Physics</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkEtLAzEUhYMoWKt_QQKux0kyec1Sik8K3eg6JOmNTWlnxmQK7b93hhFdejf3wD3nXPgQuqXknhKtS6o4K6SoZSkVKWlJKCNCnKHZ7-H8V2t9ia5y3hJSDaNm6G3VYDjG3EPjAbcB2wYfi9j08JnsDoc2YYsz7GOxjtkn6AH7jY3NaN2cOkiu3UWP-0Feo4tgdxlufvYcfTw9vi9eiuXq-XXxsCx8xWRfeOos1IECJUw5ooN1lHrhhVOs4qwK2nHFfO04Ud4xUGumOJVEaGcF4VU1R3dTb5farwPk3mzbQ2qGl4YJxWspa8YGl5xcPrU5JwimS3Fv08lQYkZuZkRiRjxm4GaombgNQTYFY9v9Nf8T-gY4FW3x</recordid><startdate>20160125</startdate><enddate>20160125</enddate><creator>Zheltukhin, K</creator><creator>Zheltukhina, N</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20160125</creationdate><title>On existence of an x-integral for a semi-discrete chain of hyperbolic type</title><author>Zheltukhin, K ; Zheltukhina, N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-c1bae9f1e1027b08fab11c5c5b723423f8b472c9b407cb2e7d27416058ba50433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Chains</topic><topic>Integrals</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheltukhin, K</creatorcontrib><creatorcontrib>Zheltukhina, N</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheltukhin, K</au><au>Zheltukhina, N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On existence of an x-integral for a semi-discrete chain of hyperbolic type</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2016-01-25</date><risdate>2016</risdate><volume>670</volume><issue>1</issue><spage>12055</spage><pages>12055-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>A class of semi-discrete chains of the form t1x = f (x,t,t1,tx) is considered. For the given chains easily verifiable conditions for existence of x-integral of minimal order 4 are obtained.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/670/1/012055</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2016-01, Vol.670 (1), p.12055
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2574966922
source IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Chains
Integrals
Physics
title On existence of an x-integral for a semi-discrete chain of hyperbolic type
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A15%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20existence%20of%20an%20x-integral%20for%20a%20semi-discrete%20chain%20of%20hyperbolic%20type&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Zheltukhin,%20K&rft.date=2016-01-25&rft.volume=670&rft.issue=1&rft.spage=12055&rft.pages=12055-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/670/1/012055&rft_dat=%3Cproquest_cross%3E2574966922%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2574966922&rft_id=info:pmid/&rfr_iscdi=true