Family of N-dimensional superintegrable systems and quadratic algebra structures

Classical and quantum superintegrable systems have a long history and they possess more integrals of motion than degrees of freedom. They have many attractive properties, wide applications in modern physics and connection to many domains in pure and applied mathematics. We overview two new families...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2016-01, Vol.670 (1), p.12024
Hauptverfasser: Hoque, Md Fazlul, Marquette, Ian, Zhang, Yao-Zhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12024
container_title Journal of physics. Conference series
container_volume 670
creator Hoque, Md Fazlul
Marquette, Ian
Zhang, Yao-Zhong
description Classical and quantum superintegrable systems have a long history and they possess more integrals of motion than degrees of freedom. They have many attractive properties, wide applications in modern physics and connection to many domains in pure and applied mathematics. We overview two new families of superintegrable Kepler-Coulomb systems with non-central terms and superintegrable Hamiltonians with double singular oscillators of type (n, N - n) in N-dimensional Euclidean space. We present their quadratic and polynomial algebras involving Casimir operators of so(N + 1) Lie algebras that exhibit very interesting decompositions Q(3) ⊕ so(N - 1), Q(3) ⊕ so(n) ⊕ so(N - n) and the cubic Casimir operators. The realization of these algebras in terms of deformed oscillator enables the determination of a finite dimensional unitary representation. We present algebraic derivations of the degenerate energy spectra of these systems and relate them with the physical spectra obtained from the separation of variables.
doi_str_mv 10.1088/1742-6596/670/1/012024
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2574966921</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2574966921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-4a8f39a0886adc82caf4b0a7e52a0f4f3a7431d8d0d095aafa961f9b00fc16a63</originalsourceid><addsrcrecordid>eNqFkE9LwzAYh4MoOKdfQQKea5O0TVPwIsOpMNSDnsPbNBkZ_bckPezbm1FR8LL3khfye8IvD0K3lNxTIkRKy5wlvKh4ykuS0pRQRlh-hha_F-e_uxCX6Mr7HSFZnHKBPtbQ2faAB4PfksZ2uvd26KHFfhq1s33QWwd1q7E_-KA7j6Fv8H6CxkGwCkO71bUD7IObVJic9tfowkDr9c3PuURf66fP1UuyeX9-XT1uEpUxHpIchMkqiP05NEowBSavCZS6YEBMbjIo84w2oiENqQoAAxWnpqoJMYpy4NkS3c3vjm7YT9oHuRsmF5t7yYoyrzivGI0pPqeUG7x32sjR2Q7cQVIij_bkUYw8SpLRnqRythfBh3-gsiF-eeiDA9uextmM22H8K3YC-gaduIVI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2574966921</pqid></control><display><type>article</type><title>Family of N-dimensional superintegrable systems and quadratic algebra structures</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Hoque, Md Fazlul ; Marquette, Ian ; Zhang, Yao-Zhong</creator><creatorcontrib>Hoque, Md Fazlul ; Marquette, Ian ; Zhang, Yao-Zhong</creatorcontrib><description>Classical and quantum superintegrable systems have a long history and they possess more integrals of motion than degrees of freedom. They have many attractive properties, wide applications in modern physics and connection to many domains in pure and applied mathematics. We overview two new families of superintegrable Kepler-Coulomb systems with non-central terms and superintegrable Hamiltonians with double singular oscillators of type (n, N - n) in N-dimensional Euclidean space. We present their quadratic and polynomial algebras involving Casimir operators of so(N + 1) Lie algebras that exhibit very interesting decompositions Q(3) ⊕ so(N - 1), Q(3) ⊕ so(n) ⊕ so(N - n) and the cubic Casimir operators. The realization of these algebras in terms of deformed oscillator enables the determination of a finite dimensional unitary representation. We present algebraic derivations of the degenerate energy spectra of these systems and relate them with the physical spectra obtained from the separation of variables.</description><identifier>ISSN: 1742-6588</identifier><identifier>ISSN: 1742-6596</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/670/1/012024</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algebra ; Applications of mathematics ; Energy spectra ; Euclidean geometry ; Euclidean space ; Lie groups ; Mathematical analysis ; Operators (mathematics) ; Oscillators ; Physics ; Polynomials</subject><ispartof>Journal of physics. Conference series, 2016-01, Vol.670 (1), p.12024</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2016. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-4a8f39a0886adc82caf4b0a7e52a0f4f3a7431d8d0d095aafa961f9b00fc16a63</citedby><cites>FETCH-LOGICAL-c326t-4a8f39a0886adc82caf4b0a7e52a0f4f3a7431d8d0d095aafa961f9b00fc16a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/670/1/012024/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Hoque, Md Fazlul</creatorcontrib><creatorcontrib>Marquette, Ian</creatorcontrib><creatorcontrib>Zhang, Yao-Zhong</creatorcontrib><title>Family of N-dimensional superintegrable systems and quadratic algebra structures</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>Classical and quantum superintegrable systems have a long history and they possess more integrals of motion than degrees of freedom. They have many attractive properties, wide applications in modern physics and connection to many domains in pure and applied mathematics. We overview two new families of superintegrable Kepler-Coulomb systems with non-central terms and superintegrable Hamiltonians with double singular oscillators of type (n, N - n) in N-dimensional Euclidean space. We present their quadratic and polynomial algebras involving Casimir operators of so(N + 1) Lie algebras that exhibit very interesting decompositions Q(3) ⊕ so(N - 1), Q(3) ⊕ so(n) ⊕ so(N - n) and the cubic Casimir operators. The realization of these algebras in terms of deformed oscillator enables the determination of a finite dimensional unitary representation. We present algebraic derivations of the degenerate energy spectra of these systems and relate them with the physical spectra obtained from the separation of variables.</description><subject>Algebra</subject><subject>Applications of mathematics</subject><subject>Energy spectra</subject><subject>Euclidean geometry</subject><subject>Euclidean space</subject><subject>Lie groups</subject><subject>Mathematical analysis</subject><subject>Operators (mathematics)</subject><subject>Oscillators</subject><subject>Physics</subject><subject>Polynomials</subject><issn>1742-6588</issn><issn>1742-6596</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkE9LwzAYh4MoOKdfQQKea5O0TVPwIsOpMNSDnsPbNBkZ_bckPezbm1FR8LL3khfye8IvD0K3lNxTIkRKy5wlvKh4ykuS0pRQRlh-hha_F-e_uxCX6Mr7HSFZnHKBPtbQ2faAB4PfksZ2uvd26KHFfhq1s33QWwd1q7E_-KA7j6Fv8H6CxkGwCkO71bUD7IObVJic9tfowkDr9c3PuURf66fP1UuyeX9-XT1uEpUxHpIchMkqiP05NEowBSavCZS6YEBMbjIo84w2oiENqQoAAxWnpqoJMYpy4NkS3c3vjm7YT9oHuRsmF5t7yYoyrzivGI0pPqeUG7x32sjR2Q7cQVIij_bkUYw8SpLRnqRythfBh3-gsiF-eeiDA9uextmM22H8K3YC-gaduIVI</recordid><startdate>20160125</startdate><enddate>20160125</enddate><creator>Hoque, Md Fazlul</creator><creator>Marquette, Ian</creator><creator>Zhang, Yao-Zhong</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20160125</creationdate><title>Family of N-dimensional superintegrable systems and quadratic algebra structures</title><author>Hoque, Md Fazlul ; Marquette, Ian ; Zhang, Yao-Zhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-4a8f39a0886adc82caf4b0a7e52a0f4f3a7431d8d0d095aafa961f9b00fc16a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algebra</topic><topic>Applications of mathematics</topic><topic>Energy spectra</topic><topic>Euclidean geometry</topic><topic>Euclidean space</topic><topic>Lie groups</topic><topic>Mathematical analysis</topic><topic>Operators (mathematics)</topic><topic>Oscillators</topic><topic>Physics</topic><topic>Polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoque, Md Fazlul</creatorcontrib><creatorcontrib>Marquette, Ian</creatorcontrib><creatorcontrib>Zhang, Yao-Zhong</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoque, Md Fazlul</au><au>Marquette, Ian</au><au>Zhang, Yao-Zhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Family of N-dimensional superintegrable systems and quadratic algebra structures</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2016-01-25</date><risdate>2016</risdate><volume>670</volume><issue>1</issue><spage>12024</spage><pages>12024-</pages><issn>1742-6588</issn><issn>1742-6596</issn><eissn>1742-6596</eissn><abstract>Classical and quantum superintegrable systems have a long history and they possess more integrals of motion than degrees of freedom. They have many attractive properties, wide applications in modern physics and connection to many domains in pure and applied mathematics. We overview two new families of superintegrable Kepler-Coulomb systems with non-central terms and superintegrable Hamiltonians with double singular oscillators of type (n, N - n) in N-dimensional Euclidean space. We present their quadratic and polynomial algebras involving Casimir operators of so(N + 1) Lie algebras that exhibit very interesting decompositions Q(3) ⊕ so(N - 1), Q(3) ⊕ so(n) ⊕ so(N - n) and the cubic Casimir operators. The realization of these algebras in terms of deformed oscillator enables the determination of a finite dimensional unitary representation. We present algebraic derivations of the degenerate energy spectra of these systems and relate them with the physical spectra obtained from the separation of variables.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/670/1/012024</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2016-01, Vol.670 (1), p.12024
issn 1742-6588
1742-6596
1742-6596
language eng
recordid cdi_proquest_journals_2574966921
source IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Algebra
Applications of mathematics
Energy spectra
Euclidean geometry
Euclidean space
Lie groups
Mathematical analysis
Operators (mathematics)
Oscillators
Physics
Polynomials
title Family of N-dimensional superintegrable systems and quadratic algebra structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A51%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Family%20of%20N-dimensional%20superintegrable%20systems%20and%20quadratic%20algebra%20structures&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Hoque,%20Md%20Fazlul&rft.date=2016-01-25&rft.volume=670&rft.issue=1&rft.spage=12024&rft.pages=12024-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/670/1/012024&rft_dat=%3Cproquest_cross%3E2574966921%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2574966921&rft_id=info:pmid/&rfr_iscdi=true