Merlion: A Machine Learning Library for Time Series

We introduce Merlion, an open-source machine learning library for time series. It features a unified interface for many commonly used models and datasets for anomaly detection and forecasting on both univariate and multivariate time series, along with standard pre/post-processing layers. It has seve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-09
Hauptverfasser: Bhatnagar, Aadyot, Kassianik, Paul, Liu, Chenghao, Tian Lan, Yang, Wenzhuo, Rowan Cassius, Sahoo, Doyen, Devansh Arpit, Subramanian, Sri, Woo, Gerald, Saha, Amrita, Jagota, Arun Kumar, Gopalakrishnan, Gokulakrishnan, Singh, Manpreet, Krithika, K C, Maddineni, Sukumar, Cho, Daeki, Zong, Bo, Zhou, Yingbo, Xiong, Caiming, Savarese, Silvio, Hoi, Steven, Wang, Huan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Bhatnagar, Aadyot
Kassianik, Paul
Liu, Chenghao
Tian Lan
Yang, Wenzhuo
Rowan Cassius
Sahoo, Doyen
Devansh Arpit
Subramanian, Sri
Woo, Gerald
Saha, Amrita
Jagota, Arun Kumar
Gopalakrishnan, Gokulakrishnan
Singh, Manpreet
Krithika, K C
Maddineni, Sukumar
Cho, Daeki
Zong, Bo
Zhou, Yingbo
Xiong, Caiming
Savarese, Silvio
Hoi, Steven
Wang, Huan
description We introduce Merlion, an open-source machine learning library for time series. It features a unified interface for many commonly used models and datasets for anomaly detection and forecasting on both univariate and multivariate time series, along with standard pre/post-processing layers. It has several modules to improve ease-of-use, including visualization, anomaly score calibration to improve interpetability, AutoML for hyperparameter tuning and model selection, and model ensembling. Merlion also provides a unique evaluation framework that simulates the live deployment and re-training of a model in production. This library aims to provide engineers and researchers a one-stop solution to rapidly develop models for their specific time series needs and benchmark them across multiple time series datasets. In this technical report, we highlight Merlion's architecture and major functionalities, and we report benchmark numbers across different baseline models and ensembles.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2574961565</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2574961565</sourcerecordid><originalsourceid>FETCH-proquest_journals_25749615653</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw9k0tysnMz7NScFTwTUzOyMxLVfBJTSzKy8xLV_DJTCpKLKpUSMsvUgjJzE1VCE4tykwt5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCNTcxNLM0NTM1Nj4lQBAJ-qM0g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2574961565</pqid></control><display><type>article</type><title>Merlion: A Machine Learning Library for Time Series</title><source>Free E- Journals</source><creator>Bhatnagar, Aadyot ; Kassianik, Paul ; Liu, Chenghao ; Tian Lan ; Yang, Wenzhuo ; Rowan Cassius ; Sahoo, Doyen ; Devansh Arpit ; Subramanian, Sri ; Woo, Gerald ; Saha, Amrita ; Jagota, Arun Kumar ; Gopalakrishnan, Gokulakrishnan ; Singh, Manpreet ; Krithika, K C ; Maddineni, Sukumar ; Cho, Daeki ; Zong, Bo ; Zhou, Yingbo ; Xiong, Caiming ; Savarese, Silvio ; Hoi, Steven ; Wang, Huan</creator><creatorcontrib>Bhatnagar, Aadyot ; Kassianik, Paul ; Liu, Chenghao ; Tian Lan ; Yang, Wenzhuo ; Rowan Cassius ; Sahoo, Doyen ; Devansh Arpit ; Subramanian, Sri ; Woo, Gerald ; Saha, Amrita ; Jagota, Arun Kumar ; Gopalakrishnan, Gokulakrishnan ; Singh, Manpreet ; Krithika, K C ; Maddineni, Sukumar ; Cho, Daeki ; Zong, Bo ; Zhou, Yingbo ; Xiong, Caiming ; Savarese, Silvio ; Hoi, Steven ; Wang, Huan</creatorcontrib><description>We introduce Merlion, an open-source machine learning library for time series. It features a unified interface for many commonly used models and datasets for anomaly detection and forecasting on both univariate and multivariate time series, along with standard pre/post-processing layers. It has several modules to improve ease-of-use, including visualization, anomaly score calibration to improve interpetability, AutoML for hyperparameter tuning and model selection, and model ensembling. Merlion also provides a unique evaluation framework that simulates the live deployment and re-training of a model in production. This library aims to provide engineers and researchers a one-stop solution to rapidly develop models for their specific time series needs and benchmark them across multiple time series datasets. In this technical report, we highlight Merlion's architecture and major functionalities, and we report benchmark numbers across different baseline models and ensembles.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Anomalies ; Benchmarks ; Datasets ; Libraries ; Machine learning ; Post-production processing ; Time series</subject><ispartof>arXiv.org, 2021-09</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Bhatnagar, Aadyot</creatorcontrib><creatorcontrib>Kassianik, Paul</creatorcontrib><creatorcontrib>Liu, Chenghao</creatorcontrib><creatorcontrib>Tian Lan</creatorcontrib><creatorcontrib>Yang, Wenzhuo</creatorcontrib><creatorcontrib>Rowan Cassius</creatorcontrib><creatorcontrib>Sahoo, Doyen</creatorcontrib><creatorcontrib>Devansh Arpit</creatorcontrib><creatorcontrib>Subramanian, Sri</creatorcontrib><creatorcontrib>Woo, Gerald</creatorcontrib><creatorcontrib>Saha, Amrita</creatorcontrib><creatorcontrib>Jagota, Arun Kumar</creatorcontrib><creatorcontrib>Gopalakrishnan, Gokulakrishnan</creatorcontrib><creatorcontrib>Singh, Manpreet</creatorcontrib><creatorcontrib>Krithika, K C</creatorcontrib><creatorcontrib>Maddineni, Sukumar</creatorcontrib><creatorcontrib>Cho, Daeki</creatorcontrib><creatorcontrib>Zong, Bo</creatorcontrib><creatorcontrib>Zhou, Yingbo</creatorcontrib><creatorcontrib>Xiong, Caiming</creatorcontrib><creatorcontrib>Savarese, Silvio</creatorcontrib><creatorcontrib>Hoi, Steven</creatorcontrib><creatorcontrib>Wang, Huan</creatorcontrib><title>Merlion: A Machine Learning Library for Time Series</title><title>arXiv.org</title><description>We introduce Merlion, an open-source machine learning library for time series. It features a unified interface for many commonly used models and datasets for anomaly detection and forecasting on both univariate and multivariate time series, along with standard pre/post-processing layers. It has several modules to improve ease-of-use, including visualization, anomaly score calibration to improve interpetability, AutoML for hyperparameter tuning and model selection, and model ensembling. Merlion also provides a unique evaluation framework that simulates the live deployment and re-training of a model in production. This library aims to provide engineers and researchers a one-stop solution to rapidly develop models for their specific time series needs and benchmark them across multiple time series datasets. In this technical report, we highlight Merlion's architecture and major functionalities, and we report benchmark numbers across different baseline models and ensembles.</description><subject>Anomalies</subject><subject>Benchmarks</subject><subject>Datasets</subject><subject>Libraries</subject><subject>Machine learning</subject><subject>Post-production processing</subject><subject>Time series</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw9k0tysnMz7NScFTwTUzOyMxLVfBJTSzKy8xLV_DJTCpKLKpUSMsvUgjJzE1VCE4tykwt5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCNTcxNLM0NTM1Nj4lQBAJ-qM0g</recordid><startdate>20210920</startdate><enddate>20210920</enddate><creator>Bhatnagar, Aadyot</creator><creator>Kassianik, Paul</creator><creator>Liu, Chenghao</creator><creator>Tian Lan</creator><creator>Yang, Wenzhuo</creator><creator>Rowan Cassius</creator><creator>Sahoo, Doyen</creator><creator>Devansh Arpit</creator><creator>Subramanian, Sri</creator><creator>Woo, Gerald</creator><creator>Saha, Amrita</creator><creator>Jagota, Arun Kumar</creator><creator>Gopalakrishnan, Gokulakrishnan</creator><creator>Singh, Manpreet</creator><creator>Krithika, K C</creator><creator>Maddineni, Sukumar</creator><creator>Cho, Daeki</creator><creator>Zong, Bo</creator><creator>Zhou, Yingbo</creator><creator>Xiong, Caiming</creator><creator>Savarese, Silvio</creator><creator>Hoi, Steven</creator><creator>Wang, Huan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210920</creationdate><title>Merlion: A Machine Learning Library for Time Series</title><author>Bhatnagar, Aadyot ; Kassianik, Paul ; Liu, Chenghao ; Tian Lan ; Yang, Wenzhuo ; Rowan Cassius ; Sahoo, Doyen ; Devansh Arpit ; Subramanian, Sri ; Woo, Gerald ; Saha, Amrita ; Jagota, Arun Kumar ; Gopalakrishnan, Gokulakrishnan ; Singh, Manpreet ; Krithika, K C ; Maddineni, Sukumar ; Cho, Daeki ; Zong, Bo ; Zhou, Yingbo ; Xiong, Caiming ; Savarese, Silvio ; Hoi, Steven ; Wang, Huan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25749615653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anomalies</topic><topic>Benchmarks</topic><topic>Datasets</topic><topic>Libraries</topic><topic>Machine learning</topic><topic>Post-production processing</topic><topic>Time series</topic><toplevel>online_resources</toplevel><creatorcontrib>Bhatnagar, Aadyot</creatorcontrib><creatorcontrib>Kassianik, Paul</creatorcontrib><creatorcontrib>Liu, Chenghao</creatorcontrib><creatorcontrib>Tian Lan</creatorcontrib><creatorcontrib>Yang, Wenzhuo</creatorcontrib><creatorcontrib>Rowan Cassius</creatorcontrib><creatorcontrib>Sahoo, Doyen</creatorcontrib><creatorcontrib>Devansh Arpit</creatorcontrib><creatorcontrib>Subramanian, Sri</creatorcontrib><creatorcontrib>Woo, Gerald</creatorcontrib><creatorcontrib>Saha, Amrita</creatorcontrib><creatorcontrib>Jagota, Arun Kumar</creatorcontrib><creatorcontrib>Gopalakrishnan, Gokulakrishnan</creatorcontrib><creatorcontrib>Singh, Manpreet</creatorcontrib><creatorcontrib>Krithika, K C</creatorcontrib><creatorcontrib>Maddineni, Sukumar</creatorcontrib><creatorcontrib>Cho, Daeki</creatorcontrib><creatorcontrib>Zong, Bo</creatorcontrib><creatorcontrib>Zhou, Yingbo</creatorcontrib><creatorcontrib>Xiong, Caiming</creatorcontrib><creatorcontrib>Savarese, Silvio</creatorcontrib><creatorcontrib>Hoi, Steven</creatorcontrib><creatorcontrib>Wang, Huan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhatnagar, Aadyot</au><au>Kassianik, Paul</au><au>Liu, Chenghao</au><au>Tian Lan</au><au>Yang, Wenzhuo</au><au>Rowan Cassius</au><au>Sahoo, Doyen</au><au>Devansh Arpit</au><au>Subramanian, Sri</au><au>Woo, Gerald</au><au>Saha, Amrita</au><au>Jagota, Arun Kumar</au><au>Gopalakrishnan, Gokulakrishnan</au><au>Singh, Manpreet</au><au>Krithika, K C</au><au>Maddineni, Sukumar</au><au>Cho, Daeki</au><au>Zong, Bo</au><au>Zhou, Yingbo</au><au>Xiong, Caiming</au><au>Savarese, Silvio</au><au>Hoi, Steven</au><au>Wang, Huan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Merlion: A Machine Learning Library for Time Series</atitle><jtitle>arXiv.org</jtitle><date>2021-09-20</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>We introduce Merlion, an open-source machine learning library for time series. It features a unified interface for many commonly used models and datasets for anomaly detection and forecasting on both univariate and multivariate time series, along with standard pre/post-processing layers. It has several modules to improve ease-of-use, including visualization, anomaly score calibration to improve interpetability, AutoML for hyperparameter tuning and model selection, and model ensembling. Merlion also provides a unique evaluation framework that simulates the live deployment and re-training of a model in production. This library aims to provide engineers and researchers a one-stop solution to rapidly develop models for their specific time series needs and benchmark them across multiple time series datasets. In this technical report, we highlight Merlion's architecture and major functionalities, and we report benchmark numbers across different baseline models and ensembles.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2574961565
source Free E- Journals
subjects Anomalies
Benchmarks
Datasets
Libraries
Machine learning
Post-production processing
Time series
title Merlion: A Machine Learning Library for Time Series
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A55%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Merlion:%20A%20Machine%20Learning%20Library%20for%20Time%20Series&rft.jtitle=arXiv.org&rft.au=Bhatnagar,%20Aadyot&rft.date=2021-09-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2574961565%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2574961565&rft_id=info:pmid/&rfr_iscdi=true