Magnetic Flux Emergence in a Coronal Hole
A joint campaign of various space-borne and ground-based observatories, comprising the Japanese Hinode mission (Hinode Observing Plan 338, 20 – 30 September 2017), the GREGOR solar telescope, and the Vacuum Tower Telescope (VTT), investigated numerous targets such as pores, sunspots, and coronal hol...
Gespeichert in:
Veröffentlicht in: | Solar physics 2020-05, Vol.295 (5), Article 64 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | |
container_title | Solar physics |
container_volume | 295 |
creator | Palacios, Judith Utz, Dominik Hofmeister, Stefan Krikova, Kilian Gömöry, Peter Kuckein, Christoph Denker, Carsten Verma, Meetu González Manrique, Sergio Javier Campos Rozo, Jose Iván Koza, Július Temmer, Manuela Veronig, Astrid Diercke, Andrea Kontogiannis, Ioannis Cid, Consuelo |
description | A joint campaign of various space-borne and ground-based observatories, comprising the Japanese Hinode mission (Hinode Observing Plan 338, 20 – 30 September 2017), the GREGOR solar telescope, and the Vacuum Tower Telescope (VTT), investigated numerous targets such as pores, sunspots, and coronal holes. In this study, we focus on the coronal hole region target. On 24 September 2017, a very extended non-polar coronal hole developed patches of flux emergence, which contributed to the decrease of the overall area of the coronal hole. These flux emergence patches erode the coronal hole and transform the area into a more quiet-Sun-like area, whereby bipolar magnetic structures play an important role. Conversely, flux cancellation leads to the reduction of opposite-polarity magnetic fields and to an increase in the area of the coronal hole.
Other global coronal hole characteristics, including the evolution of the associated magnetic flux and the aforementioned area evolution in the EUV, are studied using data of the Helioseismic and Magnetic Imager (HMI) and Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). The interplanetary medium parameters of the solar wind display values compatible with the presence of the coronal hole. Furthermore, a particular transient is found in those parameters. |
doi_str_mv | 10.1007/s11207-020-01629-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2574940027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2574940027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-980360b9ce83ae743bc81f956a9d43ab6252e8fc3ce89bec2ab3eb8e71a21a523</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMoWFf_gKeCJw_RSdI2yVGW_RBWvCh4C2mcli7dZk1a0H9vawVvnmYOz_My8xJyzeCOAcj7yBgHSYEDBVZwTfUJSVguBQUt3k5JAiDUtKtzchHjHmDS8oTcPtm6w75x6bodPtPVAUONncO06VKbLn3wnW3TrW_xkpxVto149TsX5HW9ellu6e5587h82FEnmO6pViAKKLVDJSzKTJROsUrnhdXvmbBlwXOOqnJiBHSJjttSYKlQMsuZzblYkJs59xj8x4CxN3s_hPGKaHguM50BcDlSfKZc8DEGrMwxNAcbvgwDM_1m5krMWIn5qcToURKzFEe4qzH8Rf9jfQMDK2IH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2574940027</pqid></control><display><type>article</type><title>Magnetic Flux Emergence in a Coronal Hole</title><source>SpringerLink Journals - AutoHoldings</source><creator>Palacios, Judith ; Utz, Dominik ; Hofmeister, Stefan ; Krikova, Kilian ; Gömöry, Peter ; Kuckein, Christoph ; Denker, Carsten ; Verma, Meetu ; González Manrique, Sergio Javier ; Campos Rozo, Jose Iván ; Koza, Július ; Temmer, Manuela ; Veronig, Astrid ; Diercke, Andrea ; Kontogiannis, Ioannis ; Cid, Consuelo</creator><creatorcontrib>Palacios, Judith ; Utz, Dominik ; Hofmeister, Stefan ; Krikova, Kilian ; Gömöry, Peter ; Kuckein, Christoph ; Denker, Carsten ; Verma, Meetu ; González Manrique, Sergio Javier ; Campos Rozo, Jose Iván ; Koza, Július ; Temmer, Manuela ; Veronig, Astrid ; Diercke, Andrea ; Kontogiannis, Ioannis ; Cid, Consuelo</creatorcontrib><description>A joint campaign of various space-borne and ground-based observatories, comprising the Japanese Hinode mission (Hinode Observing Plan 338, 20 – 30 September 2017), the GREGOR solar telescope, and the Vacuum Tower Telescope (VTT), investigated numerous targets such as pores, sunspots, and coronal holes. In this study, we focus on the coronal hole region target. On 24 September 2017, a very extended non-polar coronal hole developed patches of flux emergence, which contributed to the decrease of the overall area of the coronal hole. These flux emergence patches erode the coronal hole and transform the area into a more quiet-Sun-like area, whereby bipolar magnetic structures play an important role. Conversely, flux cancellation leads to the reduction of opposite-polarity magnetic fields and to an increase in the area of the coronal hole.
Other global coronal hole characteristics, including the evolution of the associated magnetic flux and the aforementioned area evolution in the EUV, are studied using data of the Helioseismic and Magnetic Imager (HMI) and Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). The interplanetary medium parameters of the solar wind display values compatible with the presence of the coronal hole. Furthermore, a particular transient is found in those parameters.</description><identifier>ISSN: 0038-0938</identifier><identifier>EISSN: 1573-093X</identifier><identifier>DOI: 10.1007/s11207-020-01629-9</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Astrophysics and Astroparticles ; Atmospheric Sciences ; Coronal holes ; Datasets ; Editor’s Choice ; Evolution ; Fluctuations ; Ground-based observation ; Interplanetary medium ; Magnetic fields ; Magnetic flux ; Observatories ; Parameters ; Physics ; Physics and Astronomy ; Solar activity ; Solar observatories ; Solar physics ; Solar wind ; Space Exploration and Astronautics ; Space Sciences (including Extraterrestrial Physics ; Sun ; Sunspots ; Telescopes ; Towards Future Research on Space Weather Drivers</subject><ispartof>Solar physics, 2020-05, Vol.295 (5), Article 64</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Springer Nature B.V. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-980360b9ce83ae743bc81f956a9d43ab6252e8fc3ce89bec2ab3eb8e71a21a523</citedby><cites>FETCH-LOGICAL-c319t-980360b9ce83ae743bc81f956a9d43ab6252e8fc3ce89bec2ab3eb8e71a21a523</cites><orcidid>0000-0002-3242-1497 ; 0000-0002-7444-7046 ; 0000-0002-2863-3745 ; 0000-0002-0061-5916 ; 0000-0002-9858-0490 ; 0000-0002-3694-4527 ; 0000-0002-0473-4103 ; 0000-0002-7729-6415 ; 0000-0002-6546-5955 ; 0000-0003-1054-766X ; 0000-0002-1518-512X ; 0000-0002-0922-7864 ; 0000-0001-8883-6790</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11207-020-01629-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11207-020-01629-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Palacios, Judith</creatorcontrib><creatorcontrib>Utz, Dominik</creatorcontrib><creatorcontrib>Hofmeister, Stefan</creatorcontrib><creatorcontrib>Krikova, Kilian</creatorcontrib><creatorcontrib>Gömöry, Peter</creatorcontrib><creatorcontrib>Kuckein, Christoph</creatorcontrib><creatorcontrib>Denker, Carsten</creatorcontrib><creatorcontrib>Verma, Meetu</creatorcontrib><creatorcontrib>González Manrique, Sergio Javier</creatorcontrib><creatorcontrib>Campos Rozo, Jose Iván</creatorcontrib><creatorcontrib>Koza, Július</creatorcontrib><creatorcontrib>Temmer, Manuela</creatorcontrib><creatorcontrib>Veronig, Astrid</creatorcontrib><creatorcontrib>Diercke, Andrea</creatorcontrib><creatorcontrib>Kontogiannis, Ioannis</creatorcontrib><creatorcontrib>Cid, Consuelo</creatorcontrib><title>Magnetic Flux Emergence in a Coronal Hole</title><title>Solar physics</title><addtitle>Sol Phys</addtitle><description>A joint campaign of various space-borne and ground-based observatories, comprising the Japanese Hinode mission (Hinode Observing Plan 338, 20 – 30 September 2017), the GREGOR solar telescope, and the Vacuum Tower Telescope (VTT), investigated numerous targets such as pores, sunspots, and coronal holes. In this study, we focus on the coronal hole region target. On 24 September 2017, a very extended non-polar coronal hole developed patches of flux emergence, which contributed to the decrease of the overall area of the coronal hole. These flux emergence patches erode the coronal hole and transform the area into a more quiet-Sun-like area, whereby bipolar magnetic structures play an important role. Conversely, flux cancellation leads to the reduction of opposite-polarity magnetic fields and to an increase in the area of the coronal hole.
Other global coronal hole characteristics, including the evolution of the associated magnetic flux and the aforementioned area evolution in the EUV, are studied using data of the Helioseismic and Magnetic Imager (HMI) and Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). The interplanetary medium parameters of the solar wind display values compatible with the presence of the coronal hole. Furthermore, a particular transient is found in those parameters.</description><subject>Astrophysics and Astroparticles</subject><subject>Atmospheric Sciences</subject><subject>Coronal holes</subject><subject>Datasets</subject><subject>Editor’s Choice</subject><subject>Evolution</subject><subject>Fluctuations</subject><subject>Ground-based observation</subject><subject>Interplanetary medium</subject><subject>Magnetic fields</subject><subject>Magnetic flux</subject><subject>Observatories</subject><subject>Parameters</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Solar activity</subject><subject>Solar observatories</subject><subject>Solar physics</subject><subject>Solar wind</subject><subject>Space Exploration and Astronautics</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><subject>Sun</subject><subject>Sunspots</subject><subject>Telescopes</subject><subject>Towards Future Research on Space Weather Drivers</subject><issn>0038-0938</issn><issn>1573-093X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LxDAQhoMoWFf_gKeCJw_RSdI2yVGW_RBWvCh4C2mcli7dZk1a0H9vawVvnmYOz_My8xJyzeCOAcj7yBgHSYEDBVZwTfUJSVguBQUt3k5JAiDUtKtzchHjHmDS8oTcPtm6w75x6bodPtPVAUONncO06VKbLn3wnW3TrW_xkpxVto149TsX5HW9ellu6e5587h82FEnmO6pViAKKLVDJSzKTJROsUrnhdXvmbBlwXOOqnJiBHSJjttSYKlQMsuZzblYkJs59xj8x4CxN3s_hPGKaHguM50BcDlSfKZc8DEGrMwxNAcbvgwDM_1m5krMWIn5qcToURKzFEe4qzH8Rf9jfQMDK2IH</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Palacios, Judith</creator><creator>Utz, Dominik</creator><creator>Hofmeister, Stefan</creator><creator>Krikova, Kilian</creator><creator>Gömöry, Peter</creator><creator>Kuckein, Christoph</creator><creator>Denker, Carsten</creator><creator>Verma, Meetu</creator><creator>González Manrique, Sergio Javier</creator><creator>Campos Rozo, Jose Iván</creator><creator>Koza, Július</creator><creator>Temmer, Manuela</creator><creator>Veronig, Astrid</creator><creator>Diercke, Andrea</creator><creator>Kontogiannis, Ioannis</creator><creator>Cid, Consuelo</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-3242-1497</orcidid><orcidid>https://orcid.org/0000-0002-7444-7046</orcidid><orcidid>https://orcid.org/0000-0002-2863-3745</orcidid><orcidid>https://orcid.org/0000-0002-0061-5916</orcidid><orcidid>https://orcid.org/0000-0002-9858-0490</orcidid><orcidid>https://orcid.org/0000-0002-3694-4527</orcidid><orcidid>https://orcid.org/0000-0002-0473-4103</orcidid><orcidid>https://orcid.org/0000-0002-7729-6415</orcidid><orcidid>https://orcid.org/0000-0002-6546-5955</orcidid><orcidid>https://orcid.org/0000-0003-1054-766X</orcidid><orcidid>https://orcid.org/0000-0002-1518-512X</orcidid><orcidid>https://orcid.org/0000-0002-0922-7864</orcidid><orcidid>https://orcid.org/0000-0001-8883-6790</orcidid></search><sort><creationdate>20200501</creationdate><title>Magnetic Flux Emergence in a Coronal Hole</title><author>Palacios, Judith ; Utz, Dominik ; Hofmeister, Stefan ; Krikova, Kilian ; Gömöry, Peter ; Kuckein, Christoph ; Denker, Carsten ; Verma, Meetu ; González Manrique, Sergio Javier ; Campos Rozo, Jose Iván ; Koza, Július ; Temmer, Manuela ; Veronig, Astrid ; Diercke, Andrea ; Kontogiannis, Ioannis ; Cid, Consuelo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-980360b9ce83ae743bc81f956a9d43ab6252e8fc3ce89bec2ab3eb8e71a21a523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Astrophysics and Astroparticles</topic><topic>Atmospheric Sciences</topic><topic>Coronal holes</topic><topic>Datasets</topic><topic>Editor’s Choice</topic><topic>Evolution</topic><topic>Fluctuations</topic><topic>Ground-based observation</topic><topic>Interplanetary medium</topic><topic>Magnetic fields</topic><topic>Magnetic flux</topic><topic>Observatories</topic><topic>Parameters</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Solar activity</topic><topic>Solar observatories</topic><topic>Solar physics</topic><topic>Solar wind</topic><topic>Space Exploration and Astronautics</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><topic>Sun</topic><topic>Sunspots</topic><topic>Telescopes</topic><topic>Towards Future Research on Space Weather Drivers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Palacios, Judith</creatorcontrib><creatorcontrib>Utz, Dominik</creatorcontrib><creatorcontrib>Hofmeister, Stefan</creatorcontrib><creatorcontrib>Krikova, Kilian</creatorcontrib><creatorcontrib>Gömöry, Peter</creatorcontrib><creatorcontrib>Kuckein, Christoph</creatorcontrib><creatorcontrib>Denker, Carsten</creatorcontrib><creatorcontrib>Verma, Meetu</creatorcontrib><creatorcontrib>González Manrique, Sergio Javier</creatorcontrib><creatorcontrib>Campos Rozo, Jose Iván</creatorcontrib><creatorcontrib>Koza, Július</creatorcontrib><creatorcontrib>Temmer, Manuela</creatorcontrib><creatorcontrib>Veronig, Astrid</creatorcontrib><creatorcontrib>Diercke, Andrea</creatorcontrib><creatorcontrib>Kontogiannis, Ioannis</creatorcontrib><creatorcontrib>Cid, Consuelo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Solar physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Palacios, Judith</au><au>Utz, Dominik</au><au>Hofmeister, Stefan</au><au>Krikova, Kilian</au><au>Gömöry, Peter</au><au>Kuckein, Christoph</au><au>Denker, Carsten</au><au>Verma, Meetu</au><au>González Manrique, Sergio Javier</au><au>Campos Rozo, Jose Iván</au><au>Koza, Július</au><au>Temmer, Manuela</au><au>Veronig, Astrid</au><au>Diercke, Andrea</au><au>Kontogiannis, Ioannis</au><au>Cid, Consuelo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic Flux Emergence in a Coronal Hole</atitle><jtitle>Solar physics</jtitle><stitle>Sol Phys</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>295</volume><issue>5</issue><artnum>64</artnum><issn>0038-0938</issn><eissn>1573-093X</eissn><abstract>A joint campaign of various space-borne and ground-based observatories, comprising the Japanese Hinode mission (Hinode Observing Plan 338, 20 – 30 September 2017), the GREGOR solar telescope, and the Vacuum Tower Telescope (VTT), investigated numerous targets such as pores, sunspots, and coronal holes. In this study, we focus on the coronal hole region target. On 24 September 2017, a very extended non-polar coronal hole developed patches of flux emergence, which contributed to the decrease of the overall area of the coronal hole. These flux emergence patches erode the coronal hole and transform the area into a more quiet-Sun-like area, whereby bipolar magnetic structures play an important role. Conversely, flux cancellation leads to the reduction of opposite-polarity magnetic fields and to an increase in the area of the coronal hole.
Other global coronal hole characteristics, including the evolution of the associated magnetic flux and the aforementioned area evolution in the EUV, are studied using data of the Helioseismic and Magnetic Imager (HMI) and Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). The interplanetary medium parameters of the solar wind display values compatible with the presence of the coronal hole. Furthermore, a particular transient is found in those parameters.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11207-020-01629-9</doi><orcidid>https://orcid.org/0000-0002-3242-1497</orcidid><orcidid>https://orcid.org/0000-0002-7444-7046</orcidid><orcidid>https://orcid.org/0000-0002-2863-3745</orcidid><orcidid>https://orcid.org/0000-0002-0061-5916</orcidid><orcidid>https://orcid.org/0000-0002-9858-0490</orcidid><orcidid>https://orcid.org/0000-0002-3694-4527</orcidid><orcidid>https://orcid.org/0000-0002-0473-4103</orcidid><orcidid>https://orcid.org/0000-0002-7729-6415</orcidid><orcidid>https://orcid.org/0000-0002-6546-5955</orcidid><orcidid>https://orcid.org/0000-0003-1054-766X</orcidid><orcidid>https://orcid.org/0000-0002-1518-512X</orcidid><orcidid>https://orcid.org/0000-0002-0922-7864</orcidid><orcidid>https://orcid.org/0000-0001-8883-6790</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0038-0938 |
ispartof | Solar physics, 2020-05, Vol.295 (5), Article 64 |
issn | 0038-0938 1573-093X |
language | eng |
recordid | cdi_proquest_journals_2574940027 |
source | SpringerLink Journals - AutoHoldings |
subjects | Astrophysics and Astroparticles Atmospheric Sciences Coronal holes Datasets Editor’s Choice Evolution Fluctuations Ground-based observation Interplanetary medium Magnetic fields Magnetic flux Observatories Parameters Physics Physics and Astronomy Solar activity Solar observatories Solar physics Solar wind Space Exploration and Astronautics Space Sciences (including Extraterrestrial Physics Sun Sunspots Telescopes Towards Future Research on Space Weather Drivers |
title | Magnetic Flux Emergence in a Coronal Hole |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T01%3A10%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20Flux%20Emergence%20in%20a%20Coronal%20Hole&rft.jtitle=Solar%20physics&rft.au=Palacios,%20Judith&rft.date=2020-05-01&rft.volume=295&rft.issue=5&rft.artnum=64&rft.issn=0038-0938&rft.eissn=1573-093X&rft_id=info:doi/10.1007/s11207-020-01629-9&rft_dat=%3Cproquest_cross%3E2574940027%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2574940027&rft_id=info:pmid/&rfr_iscdi=true |