Magnetic Flux Emergence in a Coronal Hole

A joint campaign of various space-borne and ground-based observatories, comprising the Japanese Hinode mission (Hinode Observing Plan 338, 20 – 30 September 2017), the GREGOR solar telescope, and the Vacuum Tower Telescope (VTT), investigated numerous targets such as pores, sunspots, and coronal hol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar physics 2020-05, Vol.295 (5), Article 64
Hauptverfasser: Palacios, Judith, Utz, Dominik, Hofmeister, Stefan, Krikova, Kilian, Gömöry, Peter, Kuckein, Christoph, Denker, Carsten, Verma, Meetu, González Manrique, Sergio Javier, Campos Rozo, Jose Iván, Koza, Július, Temmer, Manuela, Veronig, Astrid, Diercke, Andrea, Kontogiannis, Ioannis, Cid, Consuelo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Solar physics
container_volume 295
creator Palacios, Judith
Utz, Dominik
Hofmeister, Stefan
Krikova, Kilian
Gömöry, Peter
Kuckein, Christoph
Denker, Carsten
Verma, Meetu
González Manrique, Sergio Javier
Campos Rozo, Jose Iván
Koza, Július
Temmer, Manuela
Veronig, Astrid
Diercke, Andrea
Kontogiannis, Ioannis
Cid, Consuelo
description A joint campaign of various space-borne and ground-based observatories, comprising the Japanese Hinode mission (Hinode Observing Plan 338, 20 – 30 September 2017), the GREGOR solar telescope, and the Vacuum Tower Telescope (VTT), investigated numerous targets such as pores, sunspots, and coronal holes. In this study, we focus on the coronal hole region target. On 24 September 2017, a very extended non-polar coronal hole developed patches of flux emergence, which contributed to the decrease of the overall area of the coronal hole. These flux emergence patches erode the coronal hole and transform the area into a more quiet-Sun-like area, whereby bipolar magnetic structures play an important role. Conversely, flux cancellation leads to the reduction of opposite-polarity magnetic fields and to an increase in the area of the coronal hole. Other global coronal hole characteristics, including the evolution of the associated magnetic flux and the aforementioned area evolution in the EUV, are studied using data of the Helioseismic and Magnetic Imager (HMI) and Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). The interplanetary medium parameters of the solar wind display values compatible with the presence of the coronal hole. Furthermore, a particular transient is found in those parameters.
doi_str_mv 10.1007/s11207-020-01629-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2574940027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2574940027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-980360b9ce83ae743bc81f956a9d43ab6252e8fc3ce89bec2ab3eb8e71a21a523</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMoWFf_gKeCJw_RSdI2yVGW_RBWvCh4C2mcli7dZk1a0H9vawVvnmYOz_My8xJyzeCOAcj7yBgHSYEDBVZwTfUJSVguBQUt3k5JAiDUtKtzchHjHmDS8oTcPtm6w75x6bodPtPVAUONncO06VKbLn3wnW3TrW_xkpxVto149TsX5HW9ellu6e5587h82FEnmO6pViAKKLVDJSzKTJROsUrnhdXvmbBlwXOOqnJiBHSJjttSYKlQMsuZzblYkJs59xj8x4CxN3s_hPGKaHguM50BcDlSfKZc8DEGrMwxNAcbvgwDM_1m5krMWIn5qcToURKzFEe4qzH8Rf9jfQMDK2IH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2574940027</pqid></control><display><type>article</type><title>Magnetic Flux Emergence in a Coronal Hole</title><source>SpringerLink Journals - AutoHoldings</source><creator>Palacios, Judith ; Utz, Dominik ; Hofmeister, Stefan ; Krikova, Kilian ; Gömöry, Peter ; Kuckein, Christoph ; Denker, Carsten ; Verma, Meetu ; González Manrique, Sergio Javier ; Campos Rozo, Jose Iván ; Koza, Július ; Temmer, Manuela ; Veronig, Astrid ; Diercke, Andrea ; Kontogiannis, Ioannis ; Cid, Consuelo</creator><creatorcontrib>Palacios, Judith ; Utz, Dominik ; Hofmeister, Stefan ; Krikova, Kilian ; Gömöry, Peter ; Kuckein, Christoph ; Denker, Carsten ; Verma, Meetu ; González Manrique, Sergio Javier ; Campos Rozo, Jose Iván ; Koza, Július ; Temmer, Manuela ; Veronig, Astrid ; Diercke, Andrea ; Kontogiannis, Ioannis ; Cid, Consuelo</creatorcontrib><description>A joint campaign of various space-borne and ground-based observatories, comprising the Japanese Hinode mission (Hinode Observing Plan 338, 20 – 30 September 2017), the GREGOR solar telescope, and the Vacuum Tower Telescope (VTT), investigated numerous targets such as pores, sunspots, and coronal holes. In this study, we focus on the coronal hole region target. On 24 September 2017, a very extended non-polar coronal hole developed patches of flux emergence, which contributed to the decrease of the overall area of the coronal hole. These flux emergence patches erode the coronal hole and transform the area into a more quiet-Sun-like area, whereby bipolar magnetic structures play an important role. Conversely, flux cancellation leads to the reduction of opposite-polarity magnetic fields and to an increase in the area of the coronal hole. Other global coronal hole characteristics, including the evolution of the associated magnetic flux and the aforementioned area evolution in the EUV, are studied using data of the Helioseismic and Magnetic Imager (HMI) and Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). The interplanetary medium parameters of the solar wind display values compatible with the presence of the coronal hole. Furthermore, a particular transient is found in those parameters.</description><identifier>ISSN: 0038-0938</identifier><identifier>EISSN: 1573-093X</identifier><identifier>DOI: 10.1007/s11207-020-01629-9</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Astrophysics and Astroparticles ; Atmospheric Sciences ; Coronal holes ; Datasets ; Editor’s Choice ; Evolution ; Fluctuations ; Ground-based observation ; Interplanetary medium ; Magnetic fields ; Magnetic flux ; Observatories ; Parameters ; Physics ; Physics and Astronomy ; Solar activity ; Solar observatories ; Solar physics ; Solar wind ; Space Exploration and Astronautics ; Space Sciences (including Extraterrestrial Physics ; Sun ; Sunspots ; Telescopes ; Towards Future Research on Space Weather Drivers</subject><ispartof>Solar physics, 2020-05, Vol.295 (5), Article 64</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Springer Nature B.V. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-980360b9ce83ae743bc81f956a9d43ab6252e8fc3ce89bec2ab3eb8e71a21a523</citedby><cites>FETCH-LOGICAL-c319t-980360b9ce83ae743bc81f956a9d43ab6252e8fc3ce89bec2ab3eb8e71a21a523</cites><orcidid>0000-0002-3242-1497 ; 0000-0002-7444-7046 ; 0000-0002-2863-3745 ; 0000-0002-0061-5916 ; 0000-0002-9858-0490 ; 0000-0002-3694-4527 ; 0000-0002-0473-4103 ; 0000-0002-7729-6415 ; 0000-0002-6546-5955 ; 0000-0003-1054-766X ; 0000-0002-1518-512X ; 0000-0002-0922-7864 ; 0000-0001-8883-6790</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11207-020-01629-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11207-020-01629-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Palacios, Judith</creatorcontrib><creatorcontrib>Utz, Dominik</creatorcontrib><creatorcontrib>Hofmeister, Stefan</creatorcontrib><creatorcontrib>Krikova, Kilian</creatorcontrib><creatorcontrib>Gömöry, Peter</creatorcontrib><creatorcontrib>Kuckein, Christoph</creatorcontrib><creatorcontrib>Denker, Carsten</creatorcontrib><creatorcontrib>Verma, Meetu</creatorcontrib><creatorcontrib>González Manrique, Sergio Javier</creatorcontrib><creatorcontrib>Campos Rozo, Jose Iván</creatorcontrib><creatorcontrib>Koza, Július</creatorcontrib><creatorcontrib>Temmer, Manuela</creatorcontrib><creatorcontrib>Veronig, Astrid</creatorcontrib><creatorcontrib>Diercke, Andrea</creatorcontrib><creatorcontrib>Kontogiannis, Ioannis</creatorcontrib><creatorcontrib>Cid, Consuelo</creatorcontrib><title>Magnetic Flux Emergence in a Coronal Hole</title><title>Solar physics</title><addtitle>Sol Phys</addtitle><description>A joint campaign of various space-borne and ground-based observatories, comprising the Japanese Hinode mission (Hinode Observing Plan 338, 20 – 30 September 2017), the GREGOR solar telescope, and the Vacuum Tower Telescope (VTT), investigated numerous targets such as pores, sunspots, and coronal holes. In this study, we focus on the coronal hole region target. On 24 September 2017, a very extended non-polar coronal hole developed patches of flux emergence, which contributed to the decrease of the overall area of the coronal hole. These flux emergence patches erode the coronal hole and transform the area into a more quiet-Sun-like area, whereby bipolar magnetic structures play an important role. Conversely, flux cancellation leads to the reduction of opposite-polarity magnetic fields and to an increase in the area of the coronal hole. Other global coronal hole characteristics, including the evolution of the associated magnetic flux and the aforementioned area evolution in the EUV, are studied using data of the Helioseismic and Magnetic Imager (HMI) and Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). The interplanetary medium parameters of the solar wind display values compatible with the presence of the coronal hole. Furthermore, a particular transient is found in those parameters.</description><subject>Astrophysics and Astroparticles</subject><subject>Atmospheric Sciences</subject><subject>Coronal holes</subject><subject>Datasets</subject><subject>Editor’s Choice</subject><subject>Evolution</subject><subject>Fluctuations</subject><subject>Ground-based observation</subject><subject>Interplanetary medium</subject><subject>Magnetic fields</subject><subject>Magnetic flux</subject><subject>Observatories</subject><subject>Parameters</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Solar activity</subject><subject>Solar observatories</subject><subject>Solar physics</subject><subject>Solar wind</subject><subject>Space Exploration and Astronautics</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><subject>Sun</subject><subject>Sunspots</subject><subject>Telescopes</subject><subject>Towards Future Research on Space Weather Drivers</subject><issn>0038-0938</issn><issn>1573-093X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LxDAQhoMoWFf_gKeCJw_RSdI2yVGW_RBWvCh4C2mcli7dZk1a0H9vawVvnmYOz_My8xJyzeCOAcj7yBgHSYEDBVZwTfUJSVguBQUt3k5JAiDUtKtzchHjHmDS8oTcPtm6w75x6bodPtPVAUONncO06VKbLn3wnW3TrW_xkpxVto149TsX5HW9ellu6e5587h82FEnmO6pViAKKLVDJSzKTJROsUrnhdXvmbBlwXOOqnJiBHSJjttSYKlQMsuZzblYkJs59xj8x4CxN3s_hPGKaHguM50BcDlSfKZc8DEGrMwxNAcbvgwDM_1m5krMWIn5qcToURKzFEe4qzH8Rf9jfQMDK2IH</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Palacios, Judith</creator><creator>Utz, Dominik</creator><creator>Hofmeister, Stefan</creator><creator>Krikova, Kilian</creator><creator>Gömöry, Peter</creator><creator>Kuckein, Christoph</creator><creator>Denker, Carsten</creator><creator>Verma, Meetu</creator><creator>González Manrique, Sergio Javier</creator><creator>Campos Rozo, Jose Iván</creator><creator>Koza, Július</creator><creator>Temmer, Manuela</creator><creator>Veronig, Astrid</creator><creator>Diercke, Andrea</creator><creator>Kontogiannis, Ioannis</creator><creator>Cid, Consuelo</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-3242-1497</orcidid><orcidid>https://orcid.org/0000-0002-7444-7046</orcidid><orcidid>https://orcid.org/0000-0002-2863-3745</orcidid><orcidid>https://orcid.org/0000-0002-0061-5916</orcidid><orcidid>https://orcid.org/0000-0002-9858-0490</orcidid><orcidid>https://orcid.org/0000-0002-3694-4527</orcidid><orcidid>https://orcid.org/0000-0002-0473-4103</orcidid><orcidid>https://orcid.org/0000-0002-7729-6415</orcidid><orcidid>https://orcid.org/0000-0002-6546-5955</orcidid><orcidid>https://orcid.org/0000-0003-1054-766X</orcidid><orcidid>https://orcid.org/0000-0002-1518-512X</orcidid><orcidid>https://orcid.org/0000-0002-0922-7864</orcidid><orcidid>https://orcid.org/0000-0001-8883-6790</orcidid></search><sort><creationdate>20200501</creationdate><title>Magnetic Flux Emergence in a Coronal Hole</title><author>Palacios, Judith ; Utz, Dominik ; Hofmeister, Stefan ; Krikova, Kilian ; Gömöry, Peter ; Kuckein, Christoph ; Denker, Carsten ; Verma, Meetu ; González Manrique, Sergio Javier ; Campos Rozo, Jose Iván ; Koza, Július ; Temmer, Manuela ; Veronig, Astrid ; Diercke, Andrea ; Kontogiannis, Ioannis ; Cid, Consuelo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-980360b9ce83ae743bc81f956a9d43ab6252e8fc3ce89bec2ab3eb8e71a21a523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Astrophysics and Astroparticles</topic><topic>Atmospheric Sciences</topic><topic>Coronal holes</topic><topic>Datasets</topic><topic>Editor’s Choice</topic><topic>Evolution</topic><topic>Fluctuations</topic><topic>Ground-based observation</topic><topic>Interplanetary medium</topic><topic>Magnetic fields</topic><topic>Magnetic flux</topic><topic>Observatories</topic><topic>Parameters</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Solar activity</topic><topic>Solar observatories</topic><topic>Solar physics</topic><topic>Solar wind</topic><topic>Space Exploration and Astronautics</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><topic>Sun</topic><topic>Sunspots</topic><topic>Telescopes</topic><topic>Towards Future Research on Space Weather Drivers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Palacios, Judith</creatorcontrib><creatorcontrib>Utz, Dominik</creatorcontrib><creatorcontrib>Hofmeister, Stefan</creatorcontrib><creatorcontrib>Krikova, Kilian</creatorcontrib><creatorcontrib>Gömöry, Peter</creatorcontrib><creatorcontrib>Kuckein, Christoph</creatorcontrib><creatorcontrib>Denker, Carsten</creatorcontrib><creatorcontrib>Verma, Meetu</creatorcontrib><creatorcontrib>González Manrique, Sergio Javier</creatorcontrib><creatorcontrib>Campos Rozo, Jose Iván</creatorcontrib><creatorcontrib>Koza, Július</creatorcontrib><creatorcontrib>Temmer, Manuela</creatorcontrib><creatorcontrib>Veronig, Astrid</creatorcontrib><creatorcontrib>Diercke, Andrea</creatorcontrib><creatorcontrib>Kontogiannis, Ioannis</creatorcontrib><creatorcontrib>Cid, Consuelo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Solar physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Palacios, Judith</au><au>Utz, Dominik</au><au>Hofmeister, Stefan</au><au>Krikova, Kilian</au><au>Gömöry, Peter</au><au>Kuckein, Christoph</au><au>Denker, Carsten</au><au>Verma, Meetu</au><au>González Manrique, Sergio Javier</au><au>Campos Rozo, Jose Iván</au><au>Koza, Július</au><au>Temmer, Manuela</au><au>Veronig, Astrid</au><au>Diercke, Andrea</au><au>Kontogiannis, Ioannis</au><au>Cid, Consuelo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic Flux Emergence in a Coronal Hole</atitle><jtitle>Solar physics</jtitle><stitle>Sol Phys</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>295</volume><issue>5</issue><artnum>64</artnum><issn>0038-0938</issn><eissn>1573-093X</eissn><abstract>A joint campaign of various space-borne and ground-based observatories, comprising the Japanese Hinode mission (Hinode Observing Plan 338, 20 – 30 September 2017), the GREGOR solar telescope, and the Vacuum Tower Telescope (VTT), investigated numerous targets such as pores, sunspots, and coronal holes. In this study, we focus on the coronal hole region target. On 24 September 2017, a very extended non-polar coronal hole developed patches of flux emergence, which contributed to the decrease of the overall area of the coronal hole. These flux emergence patches erode the coronal hole and transform the area into a more quiet-Sun-like area, whereby bipolar magnetic structures play an important role. Conversely, flux cancellation leads to the reduction of opposite-polarity magnetic fields and to an increase in the area of the coronal hole. Other global coronal hole characteristics, including the evolution of the associated magnetic flux and the aforementioned area evolution in the EUV, are studied using data of the Helioseismic and Magnetic Imager (HMI) and Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). The interplanetary medium parameters of the solar wind display values compatible with the presence of the coronal hole. Furthermore, a particular transient is found in those parameters.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11207-020-01629-9</doi><orcidid>https://orcid.org/0000-0002-3242-1497</orcidid><orcidid>https://orcid.org/0000-0002-7444-7046</orcidid><orcidid>https://orcid.org/0000-0002-2863-3745</orcidid><orcidid>https://orcid.org/0000-0002-0061-5916</orcidid><orcidid>https://orcid.org/0000-0002-9858-0490</orcidid><orcidid>https://orcid.org/0000-0002-3694-4527</orcidid><orcidid>https://orcid.org/0000-0002-0473-4103</orcidid><orcidid>https://orcid.org/0000-0002-7729-6415</orcidid><orcidid>https://orcid.org/0000-0002-6546-5955</orcidid><orcidid>https://orcid.org/0000-0003-1054-766X</orcidid><orcidid>https://orcid.org/0000-0002-1518-512X</orcidid><orcidid>https://orcid.org/0000-0002-0922-7864</orcidid><orcidid>https://orcid.org/0000-0001-8883-6790</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0038-0938
ispartof Solar physics, 2020-05, Vol.295 (5), Article 64
issn 0038-0938
1573-093X
language eng
recordid cdi_proquest_journals_2574940027
source SpringerLink Journals - AutoHoldings
subjects Astrophysics and Astroparticles
Atmospheric Sciences
Coronal holes
Datasets
Editor’s Choice
Evolution
Fluctuations
Ground-based observation
Interplanetary medium
Magnetic fields
Magnetic flux
Observatories
Parameters
Physics
Physics and Astronomy
Solar activity
Solar observatories
Solar physics
Solar wind
Space Exploration and Astronautics
Space Sciences (including Extraterrestrial Physics
Sun
Sunspots
Telescopes
Towards Future Research on Space Weather Drivers
title Magnetic Flux Emergence in a Coronal Hole
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T01%3A10%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20Flux%20Emergence%20in%20a%20Coronal%20Hole&rft.jtitle=Solar%20physics&rft.au=Palacios,%20Judith&rft.date=2020-05-01&rft.volume=295&rft.issue=5&rft.artnum=64&rft.issn=0038-0938&rft.eissn=1573-093X&rft_id=info:doi/10.1007/s11207-020-01629-9&rft_dat=%3Cproquest_cross%3E2574940027%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2574940027&rft_id=info:pmid/&rfr_iscdi=true