On the Magnetoacoustic Waves and Physical Conditions in Zebra Radio Sources

Analysis of the solar radio zebra-pattern (ZP) spectrum for the burst on 21 June 2011 has shown that the frequencies corresponding to the stripes of this ZP experience quasiperiodic oscillations relative to some average values. The period of such oscillations, expressed in the number of the ZP strip...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar physics 2021-09, Vol.296 (9), Article 139
1. Verfasser: Yasnov, L. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page
container_title Solar physics
container_volume 296
creator Yasnov, L. V.
description Analysis of the solar radio zebra-pattern (ZP) spectrum for the burst on 21 June 2011 has shown that the frequencies corresponding to the stripes of this ZP experience quasiperiodic oscillations relative to some average values. The period of such oscillations, expressed in the number of the ZP stripes, is 2.41 ± 0.21 , and expressed in frequencies, it is ( 5.00 ± 0.68 ) MHz. The change in the period of oscillations with time anticorrelates with the amplitude of the oscillations. The values of the harmonic numbers for the corresponding bands are given, and thus the magnetic-field strength is also estimated on the basis of the theory of double plasma resonance (DPR). In addition, a possible change in the L bh / L nh parameter in the ZP-generation region is taken into account ( L bh and L nh respectively are the magnetic-field and density scales). Calculations of the frequency-drift rate, carried out using an improved method for its determination, have shown that the drift values ( 3 – 8 MHz s − 1 ) are in accordance with Kaneda et al. ( Astrophys. J. Lett. 855 , L29, 2018 ). By using two density models of the solar atmosphere, the wavelength of these oscillations has also been determined. For the model presented by Aschwanden ( Space Sci. Rev. 101 , 1, 2002 ), the wavelength is about 1370 km while for the barometric density model, the wavelength is about 4650 km. The wavelength increases with time; for example, in the first model, the wavelength increases with time from 1200 to 1490 km. The calculated kink and sausage wave velocities turned out to be significantly lower than the observed ones. The reason for this discrepancy requires additional analysis.
doi_str_mv 10.1007/s11207-021-01886-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2574940025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2574940025</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-fd0f665f61453fee8ee62d6282bb1125d35bcb27345324566320222e2d7a50f03</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPA8-pkssluj1LUipWKf1C8hGw2226pSU22Qr-9qSt48zQD834z8x4hpwzOGUBxERlDKDJAlgErS5nhHhkwUfAMRvxtnwwAeLnry0NyFOMSYIeJAbmbOdotLL3Xc2c7r43fxK419FV_2Ui1q-nDYhtbo1d07F3ddq13kbaOvtsqaPqo69bTJ78JxsZjctDoVbQnv3VIXq6vnseTbDq7uR1fTjPD2ajLmhoaKUUjWS54Y21prcRaYolVlWyImovKVFjwNMZcSMkRENFiXWgBDfAhOev3roP_3NjYqWV6wKWTCkWRj3IAFEmFvcoEH2OwjVqH9kOHrWKgdu5VH5pKoamf0BQmiPdQTGI3t-Fv9T_UN2j_bbE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2574940025</pqid></control><display><type>article</type><title>On the Magnetoacoustic Waves and Physical Conditions in Zebra Radio Sources</title><source>SpringerLink Journals</source><creator>Yasnov, L. V.</creator><creatorcontrib>Yasnov, L. V.</creatorcontrib><description>Analysis of the solar radio zebra-pattern (ZP) spectrum for the burst on 21 June 2011 has shown that the frequencies corresponding to the stripes of this ZP experience quasiperiodic oscillations relative to some average values. The period of such oscillations, expressed in the number of the ZP stripes, is 2.41 ± 0.21 , and expressed in frequencies, it is ( 5.00 ± 0.68 ) MHz. The change in the period of oscillations with time anticorrelates with the amplitude of the oscillations. The values of the harmonic numbers for the corresponding bands are given, and thus the magnetic-field strength is also estimated on the basis of the theory of double plasma resonance (DPR). In addition, a possible change in the L bh / L nh parameter in the ZP-generation region is taken into account ( L bh and L nh respectively are the magnetic-field and density scales). Calculations of the frequency-drift rate, carried out using an improved method for its determination, have shown that the drift values ( 3 – 8 MHz s − 1 ) are in accordance with Kaneda et al. ( Astrophys. J. Lett. 855 , L29, 2018 ). By using two density models of the solar atmosphere, the wavelength of these oscillations has also been determined. For the model presented by Aschwanden ( Space Sci. Rev. 101 , 1, 2002 ), the wavelength is about 1370 km while for the barometric density model, the wavelength is about 4650 km. The wavelength increases with time; for example, in the first model, the wavelength increases with time from 1200 to 1490 km. The calculated kink and sausage wave velocities turned out to be significantly lower than the observed ones. The reason for this discrepancy requires additional analysis.</description><identifier>ISSN: 0038-0938</identifier><identifier>EISSN: 1573-093X</identifier><identifier>DOI: 10.1007/s11207-021-01886-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Astrophysics and Astroparticles ; Atmospheric models ; Atmospheric Sciences ; Density ; Drift rate ; Field strength ; Magnetic fields ; Magnetoacoustic waves ; Magnetohydrodynamic (MHD) Waves and Oscillations in the Sun’s Corona and MHD Coronal Seismology ; Oscillations ; Physics ; Physics and Astronomy ; Plasma ; Plasma resonance ; Solar atmosphere ; Solar physics ; Space Exploration and Astronautics ; Space Sciences (including Extraterrestrial Physics ; Velocity ; Wave velocity</subject><ispartof>Solar physics, 2021-09, Vol.296 (9), Article 139</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-fd0f665f61453fee8ee62d6282bb1125d35bcb27345324566320222e2d7a50f03</citedby><cites>FETCH-LOGICAL-c319t-fd0f665f61453fee8ee62d6282bb1125d35bcb27345324566320222e2d7a50f03</cites><orcidid>0000-0001-7164-9382</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11207-021-01886-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11207-021-01886-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Yasnov, L. V.</creatorcontrib><title>On the Magnetoacoustic Waves and Physical Conditions in Zebra Radio Sources</title><title>Solar physics</title><addtitle>Sol Phys</addtitle><description>Analysis of the solar radio zebra-pattern (ZP) spectrum for the burst on 21 June 2011 has shown that the frequencies corresponding to the stripes of this ZP experience quasiperiodic oscillations relative to some average values. The period of such oscillations, expressed in the number of the ZP stripes, is 2.41 ± 0.21 , and expressed in frequencies, it is ( 5.00 ± 0.68 ) MHz. The change in the period of oscillations with time anticorrelates with the amplitude of the oscillations. The values of the harmonic numbers for the corresponding bands are given, and thus the magnetic-field strength is also estimated on the basis of the theory of double plasma resonance (DPR). In addition, a possible change in the L bh / L nh parameter in the ZP-generation region is taken into account ( L bh and L nh respectively are the magnetic-field and density scales). Calculations of the frequency-drift rate, carried out using an improved method for its determination, have shown that the drift values ( 3 – 8 MHz s − 1 ) are in accordance with Kaneda et al. ( Astrophys. J. Lett. 855 , L29, 2018 ). By using two density models of the solar atmosphere, the wavelength of these oscillations has also been determined. For the model presented by Aschwanden ( Space Sci. Rev. 101 , 1, 2002 ), the wavelength is about 1370 km while for the barometric density model, the wavelength is about 4650 km. The wavelength increases with time; for example, in the first model, the wavelength increases with time from 1200 to 1490 km. The calculated kink and sausage wave velocities turned out to be significantly lower than the observed ones. The reason for this discrepancy requires additional analysis.</description><subject>Astrophysics and Astroparticles</subject><subject>Atmospheric models</subject><subject>Atmospheric Sciences</subject><subject>Density</subject><subject>Drift rate</subject><subject>Field strength</subject><subject>Magnetic fields</subject><subject>Magnetoacoustic waves</subject><subject>Magnetohydrodynamic (MHD) Waves and Oscillations in the Sun’s Corona and MHD Coronal Seismology</subject><subject>Oscillations</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Plasma</subject><subject>Plasma resonance</subject><subject>Solar atmosphere</subject><subject>Solar physics</subject><subject>Space Exploration and Astronautics</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><subject>Velocity</subject><subject>Wave velocity</subject><issn>0038-0938</issn><issn>1573-093X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE9LAzEQxYMoWKtfwFPA8-pkssluj1LUipWKf1C8hGw2226pSU22Qr-9qSt48zQD834z8x4hpwzOGUBxERlDKDJAlgErS5nhHhkwUfAMRvxtnwwAeLnry0NyFOMSYIeJAbmbOdotLL3Xc2c7r43fxK419FV_2Ui1q-nDYhtbo1d07F3ddq13kbaOvtsqaPqo69bTJ78JxsZjctDoVbQnv3VIXq6vnseTbDq7uR1fTjPD2ajLmhoaKUUjWS54Y21prcRaYolVlWyImovKVFjwNMZcSMkRENFiXWgBDfAhOev3roP_3NjYqWV6wKWTCkWRj3IAFEmFvcoEH2OwjVqH9kOHrWKgdu5VH5pKoamf0BQmiPdQTGI3t-Fv9T_UN2j_bbE</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Yasnov, L. V.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-7164-9382</orcidid></search><sort><creationdate>20210901</creationdate><title>On the Magnetoacoustic Waves and Physical Conditions in Zebra Radio Sources</title><author>Yasnov, L. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-fd0f665f61453fee8ee62d6282bb1125d35bcb27345324566320222e2d7a50f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Astrophysics and Astroparticles</topic><topic>Atmospheric models</topic><topic>Atmospheric Sciences</topic><topic>Density</topic><topic>Drift rate</topic><topic>Field strength</topic><topic>Magnetic fields</topic><topic>Magnetoacoustic waves</topic><topic>Magnetohydrodynamic (MHD) Waves and Oscillations in the Sun’s Corona and MHD Coronal Seismology</topic><topic>Oscillations</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Plasma</topic><topic>Plasma resonance</topic><topic>Solar atmosphere</topic><topic>Solar physics</topic><topic>Space Exploration and Astronautics</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><topic>Velocity</topic><topic>Wave velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yasnov, L. V.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Solar physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yasnov, L. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Magnetoacoustic Waves and Physical Conditions in Zebra Radio Sources</atitle><jtitle>Solar physics</jtitle><stitle>Sol Phys</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>296</volume><issue>9</issue><artnum>139</artnum><issn>0038-0938</issn><eissn>1573-093X</eissn><abstract>Analysis of the solar radio zebra-pattern (ZP) spectrum for the burst on 21 June 2011 has shown that the frequencies corresponding to the stripes of this ZP experience quasiperiodic oscillations relative to some average values. The period of such oscillations, expressed in the number of the ZP stripes, is 2.41 ± 0.21 , and expressed in frequencies, it is ( 5.00 ± 0.68 ) MHz. The change in the period of oscillations with time anticorrelates with the amplitude of the oscillations. The values of the harmonic numbers for the corresponding bands are given, and thus the magnetic-field strength is also estimated on the basis of the theory of double plasma resonance (DPR). In addition, a possible change in the L bh / L nh parameter in the ZP-generation region is taken into account ( L bh and L nh respectively are the magnetic-field and density scales). Calculations of the frequency-drift rate, carried out using an improved method for its determination, have shown that the drift values ( 3 – 8 MHz s − 1 ) are in accordance with Kaneda et al. ( Astrophys. J. Lett. 855 , L29, 2018 ). By using two density models of the solar atmosphere, the wavelength of these oscillations has also been determined. For the model presented by Aschwanden ( Space Sci. Rev. 101 , 1, 2002 ), the wavelength is about 1370 km while for the barometric density model, the wavelength is about 4650 km. The wavelength increases with time; for example, in the first model, the wavelength increases with time from 1200 to 1490 km. The calculated kink and sausage wave velocities turned out to be significantly lower than the observed ones. The reason for this discrepancy requires additional analysis.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11207-021-01886-2</doi><orcidid>https://orcid.org/0000-0001-7164-9382</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0038-0938
ispartof Solar physics, 2021-09, Vol.296 (9), Article 139
issn 0038-0938
1573-093X
language eng
recordid cdi_proquest_journals_2574940025
source SpringerLink Journals
subjects Astrophysics and Astroparticles
Atmospheric models
Atmospheric Sciences
Density
Drift rate
Field strength
Magnetic fields
Magnetoacoustic waves
Magnetohydrodynamic (MHD) Waves and Oscillations in the Sun’s Corona and MHD Coronal Seismology
Oscillations
Physics
Physics and Astronomy
Plasma
Plasma resonance
Solar atmosphere
Solar physics
Space Exploration and Astronautics
Space Sciences (including Extraterrestrial Physics
Velocity
Wave velocity
title On the Magnetoacoustic Waves and Physical Conditions in Zebra Radio Sources
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T11%3A23%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Magnetoacoustic%20Waves%20and%20Physical%20Conditions%20in%20Zebra%20Radio%20Sources&rft.jtitle=Solar%20physics&rft.au=Yasnov,%20L.%20V.&rft.date=2021-09-01&rft.volume=296&rft.issue=9&rft.artnum=139&rft.issn=0038-0938&rft.eissn=1573-093X&rft_id=info:doi/10.1007/s11207-021-01886-2&rft_dat=%3Cproquest_cross%3E2574940025%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2574940025&rft_id=info:pmid/&rfr_iscdi=true