Inferring Macroscale Brain Dynamics via Fusion of Simultaneous EEG-fMRI

Advances in the instrumentation and signal processing for simultaneously acquired electroencephalography and functional magnetic resonance imaging (EEG-fMRI) have enabled new ways to observe the spatiotemporal neural dynamics of the human brain. Central to the utility of EEG-fMRI neuroimaging system...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annual review of neuroscience 2021-07, Vol.44 (1), p.315-334
Hauptverfasser: Philiastides, Marios G, Tu, Tao, Sajda, Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 334
container_issue 1
container_start_page 315
container_title Annual review of neuroscience
container_volume 44
creator Philiastides, Marios G
Tu, Tao
Sajda, Paul
description Advances in the instrumentation and signal processing for simultaneously acquired electroencephalography and functional magnetic resonance imaging (EEG-fMRI) have enabled new ways to observe the spatiotemporal neural dynamics of the human brain. Central to the utility of EEG-fMRI neuroimaging systems are the methods for fusing the two data streams, with machine learning playing a key role. These methods can be dichotomized into those that are symmetric and asymmetric in terms of how the two modalities inform the fusion. Studies using these methods have shown that fusion yields new insights into brain function that are not possible when each modality is acquired separately. As technology improves and methods for fusion become more sophisticated, the future of EEG-fMRI for noninvasive measurement of brain dynamics includes mesoscale mapping at ultrahigh magnetic resonance fields, targeted perturbation-based neuroimaging, and using deep learning to uncover nonlinear representations that link the electrophysiological and hemodynamic measurements.
doi_str_mv 10.1146/annurev-neuro-100220-093239
format Article
fullrecord <record><control><sourceid>proquest_annua</sourceid><recordid>TN_cdi_proquest_journals_2574802110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2505366407</sourcerecordid><originalsourceid>FETCH-LOGICAL-a525t-352d3ed7823da41dab49b05e5b330e53f01ed7d5098f47da4cc443e184a069d83</originalsourceid><addsrcrecordid>eNqVkMlOwzAQhi0EgrK8AorUCxfDeMsiLkAppRIIiUXiZjmJg4wSp9g1iLfHJYUDN05zmG_-mfkQGhM4JoSnJ8ra4PQ7tjq4HhMASgFDwSgrNtCICC4wJzTdRCMgPMMA6fMO2vX-FSBSrNhGO4xlaUTyEZrNbaOdM_YluVWV632lWp1cOGVscvlpVWcqn7wblVwFb3qb9E3yYLrQLpXVffDJdDrDze39fB9tNar1-mBd99DT1fRxco1v7mbzyfkNVoKKJWaC1kzXWU5ZrTipVcmLEoQWJWOgBWuAxG4toMgbnkWkqjhnmuRcQVrUOdtDR0PuwvVvQful7IyvdNsO90gqQLA05ZBFdPwHfe2Ds_G6SGU8B0oIROp0oFbPe6cbuXCmU-5TEpAr33LtW377loNvOfiO04frHaHsdP07-yM4AmcDsEpRbcwx-sP_a8cXTPaUew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2574802110</pqid></control><display><type>article</type><title>Inferring Macroscale Brain Dynamics via Fusion of Simultaneous EEG-fMRI</title><source>Annual Reviews</source><creator>Philiastides, Marios G ; Tu, Tao ; Sajda, Paul</creator><creatorcontrib>Philiastides, Marios G ; Tu, Tao ; Sajda, Paul</creatorcontrib><description>Advances in the instrumentation and signal processing for simultaneously acquired electroencephalography and functional magnetic resonance imaging (EEG-fMRI) have enabled new ways to observe the spatiotemporal neural dynamics of the human brain. Central to the utility of EEG-fMRI neuroimaging systems are the methods for fusing the two data streams, with machine learning playing a key role. These methods can be dichotomized into those that are symmetric and asymmetric in terms of how the two modalities inform the fusion. Studies using these methods have shown that fusion yields new insights into brain function that are not possible when each modality is acquired separately. As technology improves and methods for fusion become more sophisticated, the future of EEG-fMRI for noninvasive measurement of brain dynamics includes mesoscale mapping at ultrahigh magnetic resonance fields, targeted perturbation-based neuroimaging, and using deep learning to uncover nonlinear representations that link the electrophysiological and hemodynamic measurements.</description><identifier>ISSN: 0147-006X</identifier><identifier>EISSN: 1545-4126</identifier><identifier>DOI: 10.1146/annurev-neuro-100220-093239</identifier><identifier>PMID: 33761268</identifier><language>eng</language><publisher>United States: Annual Reviews</publisher><subject>Brain mapping ; decision-making ; Deep learning ; EEG ; Electroencephalography ; Functional magnetic resonance imaging ; Learning algorithms ; Machine learning ; Medical imaging ; multimodal ; Neuroimaging ; Signal processing ; single-trial variability</subject><ispartof>Annual review of neuroscience, 2021-07, Vol.44 (1), p.315-334</ispartof><rights>Copyright Annual Reviews, Inc. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a525t-352d3ed7823da41dab49b05e5b330e53f01ed7d5098f47da4cc443e184a069d83</citedby><cites>FETCH-LOGICAL-a525t-352d3ed7823da41dab49b05e5b330e53f01ed7d5098f47da4cc443e184a069d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev-neuro-100220-093239?crawler=true&amp;mimetype=application/pdf$$EPDF$$P50$$Gannualreviews$$H</linktopdf><linktohtml>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev-neuro-100220-093239$$EHTML$$P50$$Gannualreviews$$H</linktohtml><link.rule.ids>70,314,776,780,4168,27901,27902,77997,77998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33761268$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Philiastides, Marios G</creatorcontrib><creatorcontrib>Tu, Tao</creatorcontrib><creatorcontrib>Sajda, Paul</creatorcontrib><title>Inferring Macroscale Brain Dynamics via Fusion of Simultaneous EEG-fMRI</title><title>Annual review of neuroscience</title><addtitle>Annu Rev Neurosci</addtitle><description>Advances in the instrumentation and signal processing for simultaneously acquired electroencephalography and functional magnetic resonance imaging (EEG-fMRI) have enabled new ways to observe the spatiotemporal neural dynamics of the human brain. Central to the utility of EEG-fMRI neuroimaging systems are the methods for fusing the two data streams, with machine learning playing a key role. These methods can be dichotomized into those that are symmetric and asymmetric in terms of how the two modalities inform the fusion. Studies using these methods have shown that fusion yields new insights into brain function that are not possible when each modality is acquired separately. As technology improves and methods for fusion become more sophisticated, the future of EEG-fMRI for noninvasive measurement of brain dynamics includes mesoscale mapping at ultrahigh magnetic resonance fields, targeted perturbation-based neuroimaging, and using deep learning to uncover nonlinear representations that link the electrophysiological and hemodynamic measurements.</description><subject>Brain mapping</subject><subject>decision-making</subject><subject>Deep learning</subject><subject>EEG</subject><subject>Electroencephalography</subject><subject>Functional magnetic resonance imaging</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Medical imaging</subject><subject>multimodal</subject><subject>Neuroimaging</subject><subject>Signal processing</subject><subject>single-trial variability</subject><issn>0147-006X</issn><issn>1545-4126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqVkMlOwzAQhi0EgrK8AorUCxfDeMsiLkAppRIIiUXiZjmJg4wSp9g1iLfHJYUDN05zmG_-mfkQGhM4JoSnJ8ra4PQ7tjq4HhMASgFDwSgrNtCICC4wJzTdRCMgPMMA6fMO2vX-FSBSrNhGO4xlaUTyEZrNbaOdM_YluVWV632lWp1cOGVscvlpVWcqn7wblVwFb3qb9E3yYLrQLpXVffDJdDrDze39fB9tNar1-mBd99DT1fRxco1v7mbzyfkNVoKKJWaC1kzXWU5ZrTipVcmLEoQWJWOgBWuAxG4toMgbnkWkqjhnmuRcQVrUOdtDR0PuwvVvQful7IyvdNsO90gqQLA05ZBFdPwHfe2Ds_G6SGU8B0oIROp0oFbPe6cbuXCmU-5TEpAr33LtW377loNvOfiO04frHaHsdP07-yM4AmcDsEpRbcwx-sP_a8cXTPaUew</recordid><startdate>20210708</startdate><enddate>20210708</enddate><creator>Philiastides, Marios G</creator><creator>Tu, Tao</creator><creator>Sajda, Paul</creator><general>Annual Reviews</general><general>Annual Reviews, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20210708</creationdate><title>Inferring Macroscale Brain Dynamics via Fusion of Simultaneous EEG-fMRI</title><author>Philiastides, Marios G ; Tu, Tao ; Sajda, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a525t-352d3ed7823da41dab49b05e5b330e53f01ed7d5098f47da4cc443e184a069d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Brain mapping</topic><topic>decision-making</topic><topic>Deep learning</topic><topic>EEG</topic><topic>Electroencephalography</topic><topic>Functional magnetic resonance imaging</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Medical imaging</topic><topic>multimodal</topic><topic>Neuroimaging</topic><topic>Signal processing</topic><topic>single-trial variability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Philiastides, Marios G</creatorcontrib><creatorcontrib>Tu, Tao</creatorcontrib><creatorcontrib>Sajda, Paul</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Annual review of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Philiastides, Marios G</au><au>Tu, Tao</au><au>Sajda, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inferring Macroscale Brain Dynamics via Fusion of Simultaneous EEG-fMRI</atitle><jtitle>Annual review of neuroscience</jtitle><addtitle>Annu Rev Neurosci</addtitle><date>2021-07-08</date><risdate>2021</risdate><volume>44</volume><issue>1</issue><spage>315</spage><epage>334</epage><pages>315-334</pages><issn>0147-006X</issn><eissn>1545-4126</eissn><abstract>Advances in the instrumentation and signal processing for simultaneously acquired electroencephalography and functional magnetic resonance imaging (EEG-fMRI) have enabled new ways to observe the spatiotemporal neural dynamics of the human brain. Central to the utility of EEG-fMRI neuroimaging systems are the methods for fusing the two data streams, with machine learning playing a key role. These methods can be dichotomized into those that are symmetric and asymmetric in terms of how the two modalities inform the fusion. Studies using these methods have shown that fusion yields new insights into brain function that are not possible when each modality is acquired separately. As technology improves and methods for fusion become more sophisticated, the future of EEG-fMRI for noninvasive measurement of brain dynamics includes mesoscale mapping at ultrahigh magnetic resonance fields, targeted perturbation-based neuroimaging, and using deep learning to uncover nonlinear representations that link the electrophysiological and hemodynamic measurements.</abstract><cop>United States</cop><pub>Annual Reviews</pub><pmid>33761268</pmid><doi>10.1146/annurev-neuro-100220-093239</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0147-006X
ispartof Annual review of neuroscience, 2021-07, Vol.44 (1), p.315-334
issn 0147-006X
1545-4126
language eng
recordid cdi_proquest_journals_2574802110
source Annual Reviews
subjects Brain mapping
decision-making
Deep learning
EEG
Electroencephalography
Functional magnetic resonance imaging
Learning algorithms
Machine learning
Medical imaging
multimodal
Neuroimaging
Signal processing
single-trial variability
title Inferring Macroscale Brain Dynamics via Fusion of Simultaneous EEG-fMRI
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A25%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_annua&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inferring%20Macroscale%20Brain%20Dynamics%20via%20Fusion%20of%20Simultaneous%20EEG-fMRI&rft.jtitle=Annual%20review%20of%20neuroscience&rft.au=Philiastides,%20Marios%20G&rft.date=2021-07-08&rft.volume=44&rft.issue=1&rft.spage=315&rft.epage=334&rft.pages=315-334&rft.issn=0147-006X&rft.eissn=1545-4126&rft_id=info:doi/10.1146/annurev-neuro-100220-093239&rft_dat=%3Cproquest_annua%3E2505366407%3C/proquest_annua%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2574802110&rft_id=info:pmid/33761268&rfr_iscdi=true