Inferring Macroscale Brain Dynamics via Fusion of Simultaneous EEG-fMRI
Advances in the instrumentation and signal processing for simultaneously acquired electroencephalography and functional magnetic resonance imaging (EEG-fMRI) have enabled new ways to observe the spatiotemporal neural dynamics of the human brain. Central to the utility of EEG-fMRI neuroimaging system...
Gespeichert in:
Veröffentlicht in: | Annual review of neuroscience 2021-07, Vol.44 (1), p.315-334 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 334 |
---|---|
container_issue | 1 |
container_start_page | 315 |
container_title | Annual review of neuroscience |
container_volume | 44 |
creator | Philiastides, Marios G Tu, Tao Sajda, Paul |
description | Advances in the instrumentation and signal processing for simultaneously acquired electroencephalography and functional magnetic resonance imaging (EEG-fMRI) have enabled new ways to observe the spatiotemporal neural dynamics of the human brain. Central to the utility of EEG-fMRI neuroimaging systems are the methods for fusing the two data streams, with machine learning playing a key role. These methods can be dichotomized into those that are symmetric and asymmetric in terms of how the two modalities inform the fusion. Studies using these methods have shown that fusion yields new insights into brain function that are not possible when each modality is acquired separately. As technology improves and methods for fusion become more sophisticated, the future of EEG-fMRI for noninvasive measurement of brain dynamics includes mesoscale mapping at ultrahigh magnetic resonance fields, targeted perturbation-based neuroimaging, and using deep learning to uncover nonlinear representations that link the electrophysiological and hemodynamic measurements. |
doi_str_mv | 10.1146/annurev-neuro-100220-093239 |
format | Article |
fullrecord | <record><control><sourceid>proquest_annua</sourceid><recordid>TN_cdi_proquest_journals_2574802110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2505366407</sourcerecordid><originalsourceid>FETCH-LOGICAL-a525t-352d3ed7823da41dab49b05e5b330e53f01ed7d5098f47da4cc443e184a069d83</originalsourceid><addsrcrecordid>eNqVkMlOwzAQhi0EgrK8AorUCxfDeMsiLkAppRIIiUXiZjmJg4wSp9g1iLfHJYUDN05zmG_-mfkQGhM4JoSnJ8ra4PQ7tjq4HhMASgFDwSgrNtCICC4wJzTdRCMgPMMA6fMO2vX-FSBSrNhGO4xlaUTyEZrNbaOdM_YluVWV632lWp1cOGVscvlpVWcqn7wblVwFb3qb9E3yYLrQLpXVffDJdDrDze39fB9tNar1-mBd99DT1fRxco1v7mbzyfkNVoKKJWaC1kzXWU5ZrTipVcmLEoQWJWOgBWuAxG4toMgbnkWkqjhnmuRcQVrUOdtDR0PuwvVvQful7IyvdNsO90gqQLA05ZBFdPwHfe2Ds_G6SGU8B0oIROp0oFbPe6cbuXCmU-5TEpAr33LtW377loNvOfiO04frHaHsdP07-yM4AmcDsEpRbcwx-sP_a8cXTPaUew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2574802110</pqid></control><display><type>article</type><title>Inferring Macroscale Brain Dynamics via Fusion of Simultaneous EEG-fMRI</title><source>Annual Reviews</source><creator>Philiastides, Marios G ; Tu, Tao ; Sajda, Paul</creator><creatorcontrib>Philiastides, Marios G ; Tu, Tao ; Sajda, Paul</creatorcontrib><description>Advances in the instrumentation and signal processing for simultaneously acquired electroencephalography and functional magnetic resonance imaging (EEG-fMRI) have enabled new ways to observe the spatiotemporal neural dynamics of the human brain. Central to the utility of EEG-fMRI neuroimaging systems are the methods for fusing the two data streams, with machine learning playing a key role. These methods can be dichotomized into those that are symmetric and asymmetric in terms of how the two modalities inform the fusion. Studies using these methods have shown that fusion yields new insights into brain function that are not possible when each modality is acquired separately. As technology improves and methods for fusion become more sophisticated, the future of EEG-fMRI for noninvasive measurement of brain dynamics includes mesoscale mapping at ultrahigh magnetic resonance fields, targeted perturbation-based neuroimaging, and using deep learning to uncover nonlinear representations that link the electrophysiological and hemodynamic measurements.</description><identifier>ISSN: 0147-006X</identifier><identifier>EISSN: 1545-4126</identifier><identifier>DOI: 10.1146/annurev-neuro-100220-093239</identifier><identifier>PMID: 33761268</identifier><language>eng</language><publisher>United States: Annual Reviews</publisher><subject>Brain mapping ; decision-making ; Deep learning ; EEG ; Electroencephalography ; Functional magnetic resonance imaging ; Learning algorithms ; Machine learning ; Medical imaging ; multimodal ; Neuroimaging ; Signal processing ; single-trial variability</subject><ispartof>Annual review of neuroscience, 2021-07, Vol.44 (1), p.315-334</ispartof><rights>Copyright Annual Reviews, Inc. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a525t-352d3ed7823da41dab49b05e5b330e53f01ed7d5098f47da4cc443e184a069d83</citedby><cites>FETCH-LOGICAL-a525t-352d3ed7823da41dab49b05e5b330e53f01ed7d5098f47da4cc443e184a069d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev-neuro-100220-093239?crawler=true&mimetype=application/pdf$$EPDF$$P50$$Gannualreviews$$H</linktopdf><linktohtml>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev-neuro-100220-093239$$EHTML$$P50$$Gannualreviews$$H</linktohtml><link.rule.ids>70,314,776,780,4168,27901,27902,77997,77998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33761268$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Philiastides, Marios G</creatorcontrib><creatorcontrib>Tu, Tao</creatorcontrib><creatorcontrib>Sajda, Paul</creatorcontrib><title>Inferring Macroscale Brain Dynamics via Fusion of Simultaneous EEG-fMRI</title><title>Annual review of neuroscience</title><addtitle>Annu Rev Neurosci</addtitle><description>Advances in the instrumentation and signal processing for simultaneously acquired electroencephalography and functional magnetic resonance imaging (EEG-fMRI) have enabled new ways to observe the spatiotemporal neural dynamics of the human brain. Central to the utility of EEG-fMRI neuroimaging systems are the methods for fusing the two data streams, with machine learning playing a key role. These methods can be dichotomized into those that are symmetric and asymmetric in terms of how the two modalities inform the fusion. Studies using these methods have shown that fusion yields new insights into brain function that are not possible when each modality is acquired separately. As technology improves and methods for fusion become more sophisticated, the future of EEG-fMRI for noninvasive measurement of brain dynamics includes mesoscale mapping at ultrahigh magnetic resonance fields, targeted perturbation-based neuroimaging, and using deep learning to uncover nonlinear representations that link the electrophysiological and hemodynamic measurements.</description><subject>Brain mapping</subject><subject>decision-making</subject><subject>Deep learning</subject><subject>EEG</subject><subject>Electroencephalography</subject><subject>Functional magnetic resonance imaging</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Medical imaging</subject><subject>multimodal</subject><subject>Neuroimaging</subject><subject>Signal processing</subject><subject>single-trial variability</subject><issn>0147-006X</issn><issn>1545-4126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqVkMlOwzAQhi0EgrK8AorUCxfDeMsiLkAppRIIiUXiZjmJg4wSp9g1iLfHJYUDN05zmG_-mfkQGhM4JoSnJ8ra4PQ7tjq4HhMASgFDwSgrNtCICC4wJzTdRCMgPMMA6fMO2vX-FSBSrNhGO4xlaUTyEZrNbaOdM_YluVWV632lWp1cOGVscvlpVWcqn7wblVwFb3qb9E3yYLrQLpXVffDJdDrDze39fB9tNar1-mBd99DT1fRxco1v7mbzyfkNVoKKJWaC1kzXWU5ZrTipVcmLEoQWJWOgBWuAxG4toMgbnkWkqjhnmuRcQVrUOdtDR0PuwvVvQful7IyvdNsO90gqQLA05ZBFdPwHfe2Ds_G6SGU8B0oIROp0oFbPe6cbuXCmU-5TEpAr33LtW377loNvOfiO04frHaHsdP07-yM4AmcDsEpRbcwx-sP_a8cXTPaUew</recordid><startdate>20210708</startdate><enddate>20210708</enddate><creator>Philiastides, Marios G</creator><creator>Tu, Tao</creator><creator>Sajda, Paul</creator><general>Annual Reviews</general><general>Annual Reviews, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20210708</creationdate><title>Inferring Macroscale Brain Dynamics via Fusion of Simultaneous EEG-fMRI</title><author>Philiastides, Marios G ; Tu, Tao ; Sajda, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a525t-352d3ed7823da41dab49b05e5b330e53f01ed7d5098f47da4cc443e184a069d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Brain mapping</topic><topic>decision-making</topic><topic>Deep learning</topic><topic>EEG</topic><topic>Electroencephalography</topic><topic>Functional magnetic resonance imaging</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Medical imaging</topic><topic>multimodal</topic><topic>Neuroimaging</topic><topic>Signal processing</topic><topic>single-trial variability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Philiastides, Marios G</creatorcontrib><creatorcontrib>Tu, Tao</creatorcontrib><creatorcontrib>Sajda, Paul</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Annual review of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Philiastides, Marios G</au><au>Tu, Tao</au><au>Sajda, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inferring Macroscale Brain Dynamics via Fusion of Simultaneous EEG-fMRI</atitle><jtitle>Annual review of neuroscience</jtitle><addtitle>Annu Rev Neurosci</addtitle><date>2021-07-08</date><risdate>2021</risdate><volume>44</volume><issue>1</issue><spage>315</spage><epage>334</epage><pages>315-334</pages><issn>0147-006X</issn><eissn>1545-4126</eissn><abstract>Advances in the instrumentation and signal processing for simultaneously acquired electroencephalography and functional magnetic resonance imaging (EEG-fMRI) have enabled new ways to observe the spatiotemporal neural dynamics of the human brain. Central to the utility of EEG-fMRI neuroimaging systems are the methods for fusing the two data streams, with machine learning playing a key role. These methods can be dichotomized into those that are symmetric and asymmetric in terms of how the two modalities inform the fusion. Studies using these methods have shown that fusion yields new insights into brain function that are not possible when each modality is acquired separately. As technology improves and methods for fusion become more sophisticated, the future of EEG-fMRI for noninvasive measurement of brain dynamics includes mesoscale mapping at ultrahigh magnetic resonance fields, targeted perturbation-based neuroimaging, and using deep learning to uncover nonlinear representations that link the electrophysiological and hemodynamic measurements.</abstract><cop>United States</cop><pub>Annual Reviews</pub><pmid>33761268</pmid><doi>10.1146/annurev-neuro-100220-093239</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0147-006X |
ispartof | Annual review of neuroscience, 2021-07, Vol.44 (1), p.315-334 |
issn | 0147-006X 1545-4126 |
language | eng |
recordid | cdi_proquest_journals_2574802110 |
source | Annual Reviews |
subjects | Brain mapping decision-making Deep learning EEG Electroencephalography Functional magnetic resonance imaging Learning algorithms Machine learning Medical imaging multimodal Neuroimaging Signal processing single-trial variability |
title | Inferring Macroscale Brain Dynamics via Fusion of Simultaneous EEG-fMRI |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A25%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_annua&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inferring%20Macroscale%20Brain%20Dynamics%20via%20Fusion%20of%20Simultaneous%20EEG-fMRI&rft.jtitle=Annual%20review%20of%20neuroscience&rft.au=Philiastides,%20Marios%20G&rft.date=2021-07-08&rft.volume=44&rft.issue=1&rft.spage=315&rft.epage=334&rft.pages=315-334&rft.issn=0147-006X&rft.eissn=1545-4126&rft_id=info:doi/10.1146/annurev-neuro-100220-093239&rft_dat=%3Cproquest_annua%3E2505366407%3C/proquest_annua%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2574802110&rft_id=info:pmid/33761268&rfr_iscdi=true |