Gene expression shapes the patterns of parallel evolution of herbicide resistance in the agricultural weed Monochoria vaginalis

• The evolution of herbicide resistance in weeds is an example of parallel evolution, through which genes encoding herbicide target proteins are repeatedly represented as evolutionary targets. The number of herbicide target-site genes differs among species, and little is known regarding the effects...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist 2021-10, Vol.232 (2), p.928-940
Hauptverfasser: Tanigaki, Shinji, Uchino, Akira, Okawa, Shigenori, Miura, Chikako, Hamamura, Kenshiro, Matsuo, Mitsuhiro, Yoshino, Namiko, Ueno, Naoya, Toyama, Yusuke, Fukumi, Naoya, Kijima, Eiji, Masuda, Taro, Shimono, Yoshiko, Tominaga, Tohru, Iwakami, Satoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 940
container_issue 2
container_start_page 928
container_title The New phytologist
container_volume 232
creator Tanigaki, Shinji
Uchino, Akira
Okawa, Shigenori
Miura, Chikako
Hamamura, Kenshiro
Matsuo, Mitsuhiro
Yoshino, Namiko
Ueno, Naoya
Toyama, Yusuke
Fukumi, Naoya
Kijima, Eiji
Masuda, Taro
Shimono, Yoshiko
Tominaga, Tohru
Iwakami, Satoshi
description • The evolution of herbicide resistance in weeds is an example of parallel evolution, through which genes encoding herbicide target proteins are repeatedly represented as evolutionary targets. The number of herbicide target-site genes differs among species, and little is known regarding the effects of duplicate gene copies on the evolution of herbicide resistance. • We investigated the evolution of herbicide resistance in Monochoria vaginalis, which carries five copies of sulfonylurea target-site acetolactate synthase (ALS) genes. Suspected resistant populations collected across Japan were investigated for herbicide sensitivity and ALS gene sequences, followed by functional characterization and ALS gene expression analysis. • We identified over 60 resistant populations, all of which carried resistance-conferring amino acid substitutions exclusively in MvALS1 or MvALS3. All MvALS4 alleles carried a loss-of-function mutation. Although the enzymatic properties of ALS encoded by these genes were not markedly different, the expression of MvALS1 and MvALS3 was prominently higher among all ALS genes. • The higher expression of MvALS1 and MvALS3 is the driving force of the biased representation of genes during the evolution of herbicide resistance in M. vaginalis. Our findings highlight that gene expression is a key factor in creating evolutionary hotspots.
doi_str_mv 10.1111/nph.17624
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2574799769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27111924</jstor_id><sourcerecordid>27111924</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3874-c86cdc896c9381282c162ac9048c4ab7cf38bcc16c7210807b1f9cf90e6423bc3</originalsourceid><addsrcrecordid>eNp1kMtKxDAUhoMoOF4WPoAQcOWimqQ1l6WIOoK3hYK7kp45tRlqU5N2dFa-utFRd2aT8Of7DoefkD3Ojng6x13fHHElRbFGJryQJtM8V-tkwpjQmSzk0ybZinHOGDMnUkzIxyV2SPG9Dxij8x2Nje0x0qFB2tthwNBF6uv0DrZtsaW48O04fJEpbTBUDtwMadJdHGwHSF33bdvn4GBshzGJ9A1xRm9856HxwVm6sM-us62LO2Sjtm3E3Z97mzxenD-cTbPru8urs9PrDHKtigy0hBloI8HkmgstgEthwbBCQ2ErBXWuK0ghKMGZZqritYHaMJSFyCvIt8nBam4f_OuIcSjnfgxphViKE1UoY5Q0iTpcURB8jAHrsg_uxYZlyVn51W-Z-i2_-03s8Yp9cy0u_wfL2_vpr7G_MuZx8OHPECrxJv1_ApJeiLs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2574799769</pqid></control><display><type>article</type><title>Gene expression shapes the patterns of parallel evolution of herbicide resistance in the agricultural weed Monochoria vaginalis</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>Wiley Online Library All Journals</source><creator>Tanigaki, Shinji ; Uchino, Akira ; Okawa, Shigenori ; Miura, Chikako ; Hamamura, Kenshiro ; Matsuo, Mitsuhiro ; Yoshino, Namiko ; Ueno, Naoya ; Toyama, Yusuke ; Fukumi, Naoya ; Kijima, Eiji ; Masuda, Taro ; Shimono, Yoshiko ; Tominaga, Tohru ; Iwakami, Satoshi</creator><creatorcontrib>Tanigaki, Shinji ; Uchino, Akira ; Okawa, Shigenori ; Miura, Chikako ; Hamamura, Kenshiro ; Matsuo, Mitsuhiro ; Yoshino, Namiko ; Ueno, Naoya ; Toyama, Yusuke ; Fukumi, Naoya ; Kijima, Eiji ; Masuda, Taro ; Shimono, Yoshiko ; Tominaga, Tohru ; Iwakami, Satoshi</creatorcontrib><description>• The evolution of herbicide resistance in weeds is an example of parallel evolution, through which genes encoding herbicide target proteins are repeatedly represented as evolutionary targets. The number of herbicide target-site genes differs among species, and little is known regarding the effects of duplicate gene copies on the evolution of herbicide resistance. • We investigated the evolution of herbicide resistance in Monochoria vaginalis, which carries five copies of sulfonylurea target-site acetolactate synthase (ALS) genes. Suspected resistant populations collected across Japan were investigated for herbicide sensitivity and ALS gene sequences, followed by functional characterization and ALS gene expression analysis. • We identified over 60 resistant populations, all of which carried resistance-conferring amino acid substitutions exclusively in MvALS1 or MvALS3. All MvALS4 alleles carried a loss-of-function mutation. Although the enzymatic properties of ALS encoded by these genes were not markedly different, the expression of MvALS1 and MvALS3 was prominently higher among all ALS genes. • The higher expression of MvALS1 and MvALS3 is the driving force of the biased representation of genes during the evolution of herbicide resistance in M. vaginalis. Our findings highlight that gene expression is a key factor in creating evolutionary hotspots.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.17624</identifier><language>eng</language><publisher>Lancaster: Wiley</publisher><subject>acetohydroxy acid synthase ; Acetolactate synthase ; Acid resistance ; Agrochemicals ; Alleles ; Amino acids ; convergent evolution ; Evolution ; evolutionary constraint ; Evolutionary genetics ; Gene expression ; Gene sequencing ; Genes ; Herbicide resistance ; Herbicides ; Monochoria vaginalis ; Mutation ; Populations ; Sulfonylurea ; target‐site resistance ; weed evolution ; Weeds</subject><ispartof>The New phytologist, 2021-10, Vol.232 (2), p.928-940</ispartof><rights>2021 The Authors © 2021 New Phytologist Foundation</rights><rights>2021 The Authors. © 2021 New Phytologist Foundation</rights><rights>Copyright © 2021 New Phytologist Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3874-c86cdc896c9381282c162ac9048c4ab7cf38bcc16c7210807b1f9cf90e6423bc3</citedby><cites>FETCH-LOGICAL-c3874-c86cdc896c9381282c162ac9048c4ab7cf38bcc16c7210807b1f9cf90e6423bc3</cites><orcidid>0000-0002-9685-040X ; 0000-0002-5549-375X ; 0000-0003-3163-9934 ; 0000-0002-9666-2222 ; 0000-0002-3432-0614 ; 0000-0003-1080-5083 ; 0000-0002-9155-0643 ; 0000-0002-6231-0851 ; 0000-0003-4012-9899</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fnph.17624$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fnph.17624$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids></links><search><creatorcontrib>Tanigaki, Shinji</creatorcontrib><creatorcontrib>Uchino, Akira</creatorcontrib><creatorcontrib>Okawa, Shigenori</creatorcontrib><creatorcontrib>Miura, Chikako</creatorcontrib><creatorcontrib>Hamamura, Kenshiro</creatorcontrib><creatorcontrib>Matsuo, Mitsuhiro</creatorcontrib><creatorcontrib>Yoshino, Namiko</creatorcontrib><creatorcontrib>Ueno, Naoya</creatorcontrib><creatorcontrib>Toyama, Yusuke</creatorcontrib><creatorcontrib>Fukumi, Naoya</creatorcontrib><creatorcontrib>Kijima, Eiji</creatorcontrib><creatorcontrib>Masuda, Taro</creatorcontrib><creatorcontrib>Shimono, Yoshiko</creatorcontrib><creatorcontrib>Tominaga, Tohru</creatorcontrib><creatorcontrib>Iwakami, Satoshi</creatorcontrib><title>Gene expression shapes the patterns of parallel evolution of herbicide resistance in the agricultural weed Monochoria vaginalis</title><title>The New phytologist</title><description>• The evolution of herbicide resistance in weeds is an example of parallel evolution, through which genes encoding herbicide target proteins are repeatedly represented as evolutionary targets. The number of herbicide target-site genes differs among species, and little is known regarding the effects of duplicate gene copies on the evolution of herbicide resistance. • We investigated the evolution of herbicide resistance in Monochoria vaginalis, which carries five copies of sulfonylurea target-site acetolactate synthase (ALS) genes. Suspected resistant populations collected across Japan were investigated for herbicide sensitivity and ALS gene sequences, followed by functional characterization and ALS gene expression analysis. • We identified over 60 resistant populations, all of which carried resistance-conferring amino acid substitutions exclusively in MvALS1 or MvALS3. All MvALS4 alleles carried a loss-of-function mutation. Although the enzymatic properties of ALS encoded by these genes were not markedly different, the expression of MvALS1 and MvALS3 was prominently higher among all ALS genes. • The higher expression of MvALS1 and MvALS3 is the driving force of the biased representation of genes during the evolution of herbicide resistance in M. vaginalis. Our findings highlight that gene expression is a key factor in creating evolutionary hotspots.</description><subject>acetohydroxy acid synthase</subject><subject>Acetolactate synthase</subject><subject>Acid resistance</subject><subject>Agrochemicals</subject><subject>Alleles</subject><subject>Amino acids</subject><subject>convergent evolution</subject><subject>Evolution</subject><subject>evolutionary constraint</subject><subject>Evolutionary genetics</subject><subject>Gene expression</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Herbicide resistance</subject><subject>Herbicides</subject><subject>Monochoria vaginalis</subject><subject>Mutation</subject><subject>Populations</subject><subject>Sulfonylurea</subject><subject>target‐site resistance</subject><subject>weed evolution</subject><subject>Weeds</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKxDAUhoMoOF4WPoAQcOWimqQ1l6WIOoK3hYK7kp45tRlqU5N2dFa-utFRd2aT8Of7DoefkD3Ojng6x13fHHElRbFGJryQJtM8V-tkwpjQmSzk0ybZinHOGDMnUkzIxyV2SPG9Dxij8x2Nje0x0qFB2tthwNBF6uv0DrZtsaW48O04fJEpbTBUDtwMadJdHGwHSF33bdvn4GBshzGJ9A1xRm9856HxwVm6sM-us62LO2Sjtm3E3Z97mzxenD-cTbPru8urs9PrDHKtigy0hBloI8HkmgstgEthwbBCQ2ErBXWuK0ghKMGZZqritYHaMJSFyCvIt8nBam4f_OuIcSjnfgxphViKE1UoY5Q0iTpcURB8jAHrsg_uxYZlyVn51W-Z-i2_-03s8Yp9cy0u_wfL2_vpr7G_MuZx8OHPECrxJv1_ApJeiLs</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Tanigaki, Shinji</creator><creator>Uchino, Akira</creator><creator>Okawa, Shigenori</creator><creator>Miura, Chikako</creator><creator>Hamamura, Kenshiro</creator><creator>Matsuo, Mitsuhiro</creator><creator>Yoshino, Namiko</creator><creator>Ueno, Naoya</creator><creator>Toyama, Yusuke</creator><creator>Fukumi, Naoya</creator><creator>Kijima, Eiji</creator><creator>Masuda, Taro</creator><creator>Shimono, Yoshiko</creator><creator>Tominaga, Tohru</creator><creator>Iwakami, Satoshi</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0002-9685-040X</orcidid><orcidid>https://orcid.org/0000-0002-5549-375X</orcidid><orcidid>https://orcid.org/0000-0003-3163-9934</orcidid><orcidid>https://orcid.org/0000-0002-9666-2222</orcidid><orcidid>https://orcid.org/0000-0002-3432-0614</orcidid><orcidid>https://orcid.org/0000-0003-1080-5083</orcidid><orcidid>https://orcid.org/0000-0002-9155-0643</orcidid><orcidid>https://orcid.org/0000-0002-6231-0851</orcidid><orcidid>https://orcid.org/0000-0003-4012-9899</orcidid></search><sort><creationdate>20211001</creationdate><title>Gene expression shapes the patterns of parallel evolution of herbicide resistance in the agricultural weed Monochoria vaginalis</title><author>Tanigaki, Shinji ; Uchino, Akira ; Okawa, Shigenori ; Miura, Chikako ; Hamamura, Kenshiro ; Matsuo, Mitsuhiro ; Yoshino, Namiko ; Ueno, Naoya ; Toyama, Yusuke ; Fukumi, Naoya ; Kijima, Eiji ; Masuda, Taro ; Shimono, Yoshiko ; Tominaga, Tohru ; Iwakami, Satoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3874-c86cdc896c9381282c162ac9048c4ab7cf38bcc16c7210807b1f9cf90e6423bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>acetohydroxy acid synthase</topic><topic>Acetolactate synthase</topic><topic>Acid resistance</topic><topic>Agrochemicals</topic><topic>Alleles</topic><topic>Amino acids</topic><topic>convergent evolution</topic><topic>Evolution</topic><topic>evolutionary constraint</topic><topic>Evolutionary genetics</topic><topic>Gene expression</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Herbicide resistance</topic><topic>Herbicides</topic><topic>Monochoria vaginalis</topic><topic>Mutation</topic><topic>Populations</topic><topic>Sulfonylurea</topic><topic>target‐site resistance</topic><topic>weed evolution</topic><topic>Weeds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tanigaki, Shinji</creatorcontrib><creatorcontrib>Uchino, Akira</creatorcontrib><creatorcontrib>Okawa, Shigenori</creatorcontrib><creatorcontrib>Miura, Chikako</creatorcontrib><creatorcontrib>Hamamura, Kenshiro</creatorcontrib><creatorcontrib>Matsuo, Mitsuhiro</creatorcontrib><creatorcontrib>Yoshino, Namiko</creatorcontrib><creatorcontrib>Ueno, Naoya</creatorcontrib><creatorcontrib>Toyama, Yusuke</creatorcontrib><creatorcontrib>Fukumi, Naoya</creatorcontrib><creatorcontrib>Kijima, Eiji</creatorcontrib><creatorcontrib>Masuda, Taro</creatorcontrib><creatorcontrib>Shimono, Yoshiko</creatorcontrib><creatorcontrib>Tominaga, Tohru</creatorcontrib><creatorcontrib>Iwakami, Satoshi</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tanigaki, Shinji</au><au>Uchino, Akira</au><au>Okawa, Shigenori</au><au>Miura, Chikako</au><au>Hamamura, Kenshiro</au><au>Matsuo, Mitsuhiro</au><au>Yoshino, Namiko</au><au>Ueno, Naoya</au><au>Toyama, Yusuke</au><au>Fukumi, Naoya</au><au>Kijima, Eiji</au><au>Masuda, Taro</au><au>Shimono, Yoshiko</au><au>Tominaga, Tohru</au><au>Iwakami, Satoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gene expression shapes the patterns of parallel evolution of herbicide resistance in the agricultural weed Monochoria vaginalis</atitle><jtitle>The New phytologist</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>232</volume><issue>2</issue><spage>928</spage><epage>940</epage><pages>928-940</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>• The evolution of herbicide resistance in weeds is an example of parallel evolution, through which genes encoding herbicide target proteins are repeatedly represented as evolutionary targets. The number of herbicide target-site genes differs among species, and little is known regarding the effects of duplicate gene copies on the evolution of herbicide resistance. • We investigated the evolution of herbicide resistance in Monochoria vaginalis, which carries five copies of sulfonylurea target-site acetolactate synthase (ALS) genes. Suspected resistant populations collected across Japan were investigated for herbicide sensitivity and ALS gene sequences, followed by functional characterization and ALS gene expression analysis. • We identified over 60 resistant populations, all of which carried resistance-conferring amino acid substitutions exclusively in MvALS1 or MvALS3. All MvALS4 alleles carried a loss-of-function mutation. Although the enzymatic properties of ALS encoded by these genes were not markedly different, the expression of MvALS1 and MvALS3 was prominently higher among all ALS genes. • The higher expression of MvALS1 and MvALS3 is the driving force of the biased representation of genes during the evolution of herbicide resistance in M. vaginalis. Our findings highlight that gene expression is a key factor in creating evolutionary hotspots.</abstract><cop>Lancaster</cop><pub>Wiley</pub><doi>10.1111/nph.17624</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9685-040X</orcidid><orcidid>https://orcid.org/0000-0002-5549-375X</orcidid><orcidid>https://orcid.org/0000-0003-3163-9934</orcidid><orcidid>https://orcid.org/0000-0002-9666-2222</orcidid><orcidid>https://orcid.org/0000-0002-3432-0614</orcidid><orcidid>https://orcid.org/0000-0003-1080-5083</orcidid><orcidid>https://orcid.org/0000-0002-9155-0643</orcidid><orcidid>https://orcid.org/0000-0002-6231-0851</orcidid><orcidid>https://orcid.org/0000-0003-4012-9899</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2021-10, Vol.232 (2), p.928-940
issn 0028-646X
1469-8137
language eng
recordid cdi_proquest_journals_2574799769
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; Wiley Online Library All Journals
subjects acetohydroxy acid synthase
Acetolactate synthase
Acid resistance
Agrochemicals
Alleles
Amino acids
convergent evolution
Evolution
evolutionary constraint
Evolutionary genetics
Gene expression
Gene sequencing
Genes
Herbicide resistance
Herbicides
Monochoria vaginalis
Mutation
Populations
Sulfonylurea
target‐site resistance
weed evolution
Weeds
title Gene expression shapes the patterns of parallel evolution of herbicide resistance in the agricultural weed Monochoria vaginalis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A45%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gene%20expression%20shapes%20the%20patterns%20of%20parallel%20evolution%20of%20herbicide%20resistance%20in%20the%20agricultural%20weed%20Monochoria%20vaginalis&rft.jtitle=The%20New%20phytologist&rft.au=Tanigaki,%20Shinji&rft.date=2021-10-01&rft.volume=232&rft.issue=2&rft.spage=928&rft.epage=940&rft.pages=928-940&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.17624&rft_dat=%3Cjstor_proqu%3E27111924%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2574799769&rft_id=info:pmid/&rft_jstor_id=27111924&rfr_iscdi=true