Halo Orbit Maintenance around L1 Point of the Sun-Earth System Using Optimal Control and Lyapunov Stability Theory
AbstractThis paper addresses the maintenance of a halo orbit around the L1 point of the Sun-Earth system in a circular restricted three-body problem. To this effect, a trajectory tracking problem is formulated and solved by designing various controllers using the linear quadratic method and Lyapunov...
Gespeichert in:
Veröffentlicht in: | Journal of aerospace engineering 2022-01, Vol.35 (1) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Journal of aerospace engineering |
container_volume | 35 |
creator | Ramteke, Vivek Kumar, Shashi Ranjan |
description | AbstractThis paper addresses the maintenance of a halo orbit around the L1 point of the Sun-Earth system in a circular restricted three-body problem. To this effect, a trajectory tracking problem is formulated and solved by designing various controllers using the linear quadratic method and Lyapunov stability theory. The linear quadratic formulations are performed using two approaches: the first one linearizes the equations of motion at several operating points, while the second approach uses a state-dependent coefficient system matrix that requires solving the state-dependent Riccati equation (SDRE). To handle the nonlinearity and to reduce the computational complexity as compared to the linear quadratic method, the controller is also derived using Lyapunov stability theory. The proposed controllers are tested for their effectiveness in reducing the orbit insertion errors as well as for disturbance rejection. The disturbances being considered are primarily due to the eccentricity of Earth’s orbit around the Sun, solar radiation pressure, and the gravitational pull of the Moon. The simulation results are presented to delineate the performances of the proposed controllers. The superiority of a Lyapunov theory-based controller over the LQR-based controllers is demonstrated. |
doi_str_mv | 10.1061/(ASCE)AS.1943-5525.0001360 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2574576821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2574576821</sourcerecordid><originalsourceid>FETCH-LOGICAL-a1821-af6bd58e305f3f880051f7824a4a7af0d3591d330f2f7d5e363e9b02c201a9943</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWD_-Q9CLHrbmY7Mf3kqpVqhUWHsO025iV9akJllh_71ZWvXkZQaG95lhHoSuKBlTktG7m0k1nd1OqjEtU54IwcSYEEJ5Ro7Q6Hd2jEakKHlCOaOn6Mz795hJs5KNkJtDa_HSrZuAn6ExQRkwG4XB2c7UeEHxi41TbDUOW4WrziQzcGGLq94H9YFXvjFveLkLzQe0eGpNcLbFMKA97Dpjv3AVYN20Tejx61ZZ11-gEw2tV5eHfo5WD7PX6TxZLB-fppNFArRgNAGdrWtRKE6E5rooCBFU5wVLIYUcNKm5KGnNOdFM57VQPOOqXBO2YYRCGV8_R9f7vTtnPzvlg3y3nTPxpGQiT0WexTMxdb9PbZz13iktdy7-4npJiRwcSzk4jkUOPuXgUx4cRzjbw-A36m_9D_k_-A1UG3_K</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2574576821</pqid></control><display><type>article</type><title>Halo Orbit Maintenance around L1 Point of the Sun-Earth System Using Optimal Control and Lyapunov Stability Theory</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><creator>Ramteke, Vivek ; Kumar, Shashi Ranjan</creator><creatorcontrib>Ramteke, Vivek ; Kumar, Shashi Ranjan</creatorcontrib><description>AbstractThis paper addresses the maintenance of a halo orbit around the L1 point of the Sun-Earth system in a circular restricted three-body problem. To this effect, a trajectory tracking problem is formulated and solved by designing various controllers using the linear quadratic method and Lyapunov stability theory. The linear quadratic formulations are performed using two approaches: the first one linearizes the equations of motion at several operating points, while the second approach uses a state-dependent coefficient system matrix that requires solving the state-dependent Riccati equation (SDRE). To handle the nonlinearity and to reduce the computational complexity as compared to the linear quadratic method, the controller is also derived using Lyapunov stability theory. The proposed controllers are tested for their effectiveness in reducing the orbit insertion errors as well as for disturbance rejection. The disturbances being considered are primarily due to the eccentricity of Earth’s orbit around the Sun, solar radiation pressure, and the gravitational pull of the Moon. The simulation results are presented to delineate the performances of the proposed controllers. The superiority of a Lyapunov theory-based controller over the LQR-based controllers is demonstrated.</description><identifier>ISSN: 0893-1321</identifier><identifier>EISSN: 1943-5525</identifier><identifier>DOI: 10.1061/(ASCE)AS.1943-5525.0001360</identifier><language>eng</language><publisher>New York: American Society of Civil Engineers</publisher><subject>Control stability ; Controllers ; Equations of motion ; Lagrangian equilibrium points ; Maintenance ; Moon ; Optimal control ; Orbit insertion ; Radiation pressure ; Riccati equation ; Solar radiation ; Technical Papers ; Three body problem ; Tracking problem</subject><ispartof>Journal of aerospace engineering, 2022-01, Vol.35 (1)</ispartof><rights>2021 American Society of Civil Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a1821-af6bd58e305f3f880051f7824a4a7af0d3591d330f2f7d5e363e9b02c201a9943</citedby><cites>FETCH-LOGICAL-a1821-af6bd58e305f3f880051f7824a4a7af0d3591d330f2f7d5e363e9b02c201a9943</cites><orcidid>0000-0003-1582-4590 ; 0000-0001-6446-7281</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)AS.1943-5525.0001360$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)AS.1943-5525.0001360$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,75936,75944</link.rule.ids></links><search><creatorcontrib>Ramteke, Vivek</creatorcontrib><creatorcontrib>Kumar, Shashi Ranjan</creatorcontrib><title>Halo Orbit Maintenance around L1 Point of the Sun-Earth System Using Optimal Control and Lyapunov Stability Theory</title><title>Journal of aerospace engineering</title><description>AbstractThis paper addresses the maintenance of a halo orbit around the L1 point of the Sun-Earth system in a circular restricted three-body problem. To this effect, a trajectory tracking problem is formulated and solved by designing various controllers using the linear quadratic method and Lyapunov stability theory. The linear quadratic formulations are performed using two approaches: the first one linearizes the equations of motion at several operating points, while the second approach uses a state-dependent coefficient system matrix that requires solving the state-dependent Riccati equation (SDRE). To handle the nonlinearity and to reduce the computational complexity as compared to the linear quadratic method, the controller is also derived using Lyapunov stability theory. The proposed controllers are tested for their effectiveness in reducing the orbit insertion errors as well as for disturbance rejection. The disturbances being considered are primarily due to the eccentricity of Earth’s orbit around the Sun, solar radiation pressure, and the gravitational pull of the Moon. The simulation results are presented to delineate the performances of the proposed controllers. The superiority of a Lyapunov theory-based controller over the LQR-based controllers is demonstrated.</description><subject>Control stability</subject><subject>Controllers</subject><subject>Equations of motion</subject><subject>Lagrangian equilibrium points</subject><subject>Maintenance</subject><subject>Moon</subject><subject>Optimal control</subject><subject>Orbit insertion</subject><subject>Radiation pressure</subject><subject>Riccati equation</subject><subject>Solar radiation</subject><subject>Technical Papers</subject><subject>Three body problem</subject><subject>Tracking problem</subject><issn>0893-1321</issn><issn>1943-5525</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWD_-Q9CLHrbmY7Mf3kqpVqhUWHsO025iV9akJllh_71ZWvXkZQaG95lhHoSuKBlTktG7m0k1nd1OqjEtU54IwcSYEEJ5Ro7Q6Hd2jEakKHlCOaOn6Mz795hJs5KNkJtDa_HSrZuAn6ExQRkwG4XB2c7UeEHxi41TbDUOW4WrziQzcGGLq94H9YFXvjFveLkLzQe0eGpNcLbFMKA97Dpjv3AVYN20Tejx61ZZ11-gEw2tV5eHfo5WD7PX6TxZLB-fppNFArRgNAGdrWtRKE6E5rooCBFU5wVLIYUcNKm5KGnNOdFM57VQPOOqXBO2YYRCGV8_R9f7vTtnPzvlg3y3nTPxpGQiT0WexTMxdb9PbZz13iktdy7-4npJiRwcSzk4jkUOPuXgUx4cRzjbw-A36m_9D_k_-A1UG3_K</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Ramteke, Vivek</creator><creator>Kumar, Shashi Ranjan</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1582-4590</orcidid><orcidid>https://orcid.org/0000-0001-6446-7281</orcidid></search><sort><creationdate>20220101</creationdate><title>Halo Orbit Maintenance around L1 Point of the Sun-Earth System Using Optimal Control and Lyapunov Stability Theory</title><author>Ramteke, Vivek ; Kumar, Shashi Ranjan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a1821-af6bd58e305f3f880051f7824a4a7af0d3591d330f2f7d5e363e9b02c201a9943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Control stability</topic><topic>Controllers</topic><topic>Equations of motion</topic><topic>Lagrangian equilibrium points</topic><topic>Maintenance</topic><topic>Moon</topic><topic>Optimal control</topic><topic>Orbit insertion</topic><topic>Radiation pressure</topic><topic>Riccati equation</topic><topic>Solar radiation</topic><topic>Technical Papers</topic><topic>Three body problem</topic><topic>Tracking problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramteke, Vivek</creatorcontrib><creatorcontrib>Kumar, Shashi Ranjan</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of aerospace engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramteke, Vivek</au><au>Kumar, Shashi Ranjan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Halo Orbit Maintenance around L1 Point of the Sun-Earth System Using Optimal Control and Lyapunov Stability Theory</atitle><jtitle>Journal of aerospace engineering</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>35</volume><issue>1</issue><issn>0893-1321</issn><eissn>1943-5525</eissn><abstract>AbstractThis paper addresses the maintenance of a halo orbit around the L1 point of the Sun-Earth system in a circular restricted three-body problem. To this effect, a trajectory tracking problem is formulated and solved by designing various controllers using the linear quadratic method and Lyapunov stability theory. The linear quadratic formulations are performed using two approaches: the first one linearizes the equations of motion at several operating points, while the second approach uses a state-dependent coefficient system matrix that requires solving the state-dependent Riccati equation (SDRE). To handle the nonlinearity and to reduce the computational complexity as compared to the linear quadratic method, the controller is also derived using Lyapunov stability theory. The proposed controllers are tested for their effectiveness in reducing the orbit insertion errors as well as for disturbance rejection. The disturbances being considered are primarily due to the eccentricity of Earth’s orbit around the Sun, solar radiation pressure, and the gravitational pull of the Moon. The simulation results are presented to delineate the performances of the proposed controllers. The superiority of a Lyapunov theory-based controller over the LQR-based controllers is demonstrated.</abstract><cop>New York</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)AS.1943-5525.0001360</doi><orcidid>https://orcid.org/0000-0003-1582-4590</orcidid><orcidid>https://orcid.org/0000-0001-6446-7281</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-1321 |
ispartof | Journal of aerospace engineering, 2022-01, Vol.35 (1) |
issn | 0893-1321 1943-5525 |
language | eng |
recordid | cdi_proquest_journals_2574576821 |
source | American Society of Civil Engineers:NESLI2:Journals:2014 |
subjects | Control stability Controllers Equations of motion Lagrangian equilibrium points Maintenance Moon Optimal control Orbit insertion Radiation pressure Riccati equation Solar radiation Technical Papers Three body problem Tracking problem |
title | Halo Orbit Maintenance around L1 Point of the Sun-Earth System Using Optimal Control and Lyapunov Stability Theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T20%3A32%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Halo%20Orbit%20Maintenance%20around%20L1%20Point%20of%20the%20Sun-Earth%20System%20Using%20Optimal%20Control%20and%20Lyapunov%20Stability%20Theory&rft.jtitle=Journal%20of%20aerospace%20engineering&rft.au=Ramteke,%20Vivek&rft.date=2022-01-01&rft.volume=35&rft.issue=1&rft.issn=0893-1321&rft.eissn=1943-5525&rft_id=info:doi/10.1061/(ASCE)AS.1943-5525.0001360&rft_dat=%3Cproquest_cross%3E2574576821%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2574576821&rft_id=info:pmid/&rfr_iscdi=true |