Halo Orbit Maintenance around L1 Point of the Sun-Earth System Using Optimal Control and Lyapunov Stability Theory

AbstractThis paper addresses the maintenance of a halo orbit around the L1 point of the Sun-Earth system in a circular restricted three-body problem. To this effect, a trajectory tracking problem is formulated and solved by designing various controllers using the linear quadratic method and Lyapunov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of aerospace engineering 2022-01, Vol.35 (1)
Hauptverfasser: Ramteke, Vivek, Kumar, Shashi Ranjan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Journal of aerospace engineering
container_volume 35
creator Ramteke, Vivek
Kumar, Shashi Ranjan
description AbstractThis paper addresses the maintenance of a halo orbit around the L1 point of the Sun-Earth system in a circular restricted three-body problem. To this effect, a trajectory tracking problem is formulated and solved by designing various controllers using the linear quadratic method and Lyapunov stability theory. The linear quadratic formulations are performed using two approaches: the first one linearizes the equations of motion at several operating points, while the second approach uses a state-dependent coefficient system matrix that requires solving the state-dependent Riccati equation (SDRE). To handle the nonlinearity and to reduce the computational complexity as compared to the linear quadratic method, the controller is also derived using Lyapunov stability theory. The proposed controllers are tested for their effectiveness in reducing the orbit insertion errors as well as for disturbance rejection. The disturbances being considered are primarily due to the eccentricity of Earth’s orbit around the Sun, solar radiation pressure, and the gravitational pull of the Moon. The simulation results are presented to delineate the performances of the proposed controllers. The superiority of a Lyapunov theory-based controller over the LQR-based controllers is demonstrated.
doi_str_mv 10.1061/(ASCE)AS.1943-5525.0001360
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2574576821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2574576821</sourcerecordid><originalsourceid>FETCH-LOGICAL-a1821-af6bd58e305f3f880051f7824a4a7af0d3591d330f2f7d5e363e9b02c201a9943</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWD_-Q9CLHrbmY7Mf3kqpVqhUWHsO025iV9akJllh_71ZWvXkZQaG95lhHoSuKBlTktG7m0k1nd1OqjEtU54IwcSYEEJ5Ro7Q6Hd2jEakKHlCOaOn6Mz795hJs5KNkJtDa_HSrZuAn6ExQRkwG4XB2c7UeEHxi41TbDUOW4WrziQzcGGLq94H9YFXvjFveLkLzQe0eGpNcLbFMKA97Dpjv3AVYN20Tejx61ZZ11-gEw2tV5eHfo5WD7PX6TxZLB-fppNFArRgNAGdrWtRKE6E5rooCBFU5wVLIYUcNKm5KGnNOdFM57VQPOOqXBO2YYRCGV8_R9f7vTtnPzvlg3y3nTPxpGQiT0WexTMxdb9PbZz13iktdy7-4npJiRwcSzk4jkUOPuXgUx4cRzjbw-A36m_9D_k_-A1UG3_K</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2574576821</pqid></control><display><type>article</type><title>Halo Orbit Maintenance around L1 Point of the Sun-Earth System Using Optimal Control and Lyapunov Stability Theory</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><creator>Ramteke, Vivek ; Kumar, Shashi Ranjan</creator><creatorcontrib>Ramteke, Vivek ; Kumar, Shashi Ranjan</creatorcontrib><description>AbstractThis paper addresses the maintenance of a halo orbit around the L1 point of the Sun-Earth system in a circular restricted three-body problem. To this effect, a trajectory tracking problem is formulated and solved by designing various controllers using the linear quadratic method and Lyapunov stability theory. The linear quadratic formulations are performed using two approaches: the first one linearizes the equations of motion at several operating points, while the second approach uses a state-dependent coefficient system matrix that requires solving the state-dependent Riccati equation (SDRE). To handle the nonlinearity and to reduce the computational complexity as compared to the linear quadratic method, the controller is also derived using Lyapunov stability theory. The proposed controllers are tested for their effectiveness in reducing the orbit insertion errors as well as for disturbance rejection. The disturbances being considered are primarily due to the eccentricity of Earth’s orbit around the Sun, solar radiation pressure, and the gravitational pull of the Moon. The simulation results are presented to delineate the performances of the proposed controllers. The superiority of a Lyapunov theory-based controller over the LQR-based controllers is demonstrated.</description><identifier>ISSN: 0893-1321</identifier><identifier>EISSN: 1943-5525</identifier><identifier>DOI: 10.1061/(ASCE)AS.1943-5525.0001360</identifier><language>eng</language><publisher>New York: American Society of Civil Engineers</publisher><subject>Control stability ; Controllers ; Equations of motion ; Lagrangian equilibrium points ; Maintenance ; Moon ; Optimal control ; Orbit insertion ; Radiation pressure ; Riccati equation ; Solar radiation ; Technical Papers ; Three body problem ; Tracking problem</subject><ispartof>Journal of aerospace engineering, 2022-01, Vol.35 (1)</ispartof><rights>2021 American Society of Civil Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a1821-af6bd58e305f3f880051f7824a4a7af0d3591d330f2f7d5e363e9b02c201a9943</citedby><cites>FETCH-LOGICAL-a1821-af6bd58e305f3f880051f7824a4a7af0d3591d330f2f7d5e363e9b02c201a9943</cites><orcidid>0000-0003-1582-4590 ; 0000-0001-6446-7281</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)AS.1943-5525.0001360$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)AS.1943-5525.0001360$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,75936,75944</link.rule.ids></links><search><creatorcontrib>Ramteke, Vivek</creatorcontrib><creatorcontrib>Kumar, Shashi Ranjan</creatorcontrib><title>Halo Orbit Maintenance around L1 Point of the Sun-Earth System Using Optimal Control and Lyapunov Stability Theory</title><title>Journal of aerospace engineering</title><description>AbstractThis paper addresses the maintenance of a halo orbit around the L1 point of the Sun-Earth system in a circular restricted three-body problem. To this effect, a trajectory tracking problem is formulated and solved by designing various controllers using the linear quadratic method and Lyapunov stability theory. The linear quadratic formulations are performed using two approaches: the first one linearizes the equations of motion at several operating points, while the second approach uses a state-dependent coefficient system matrix that requires solving the state-dependent Riccati equation (SDRE). To handle the nonlinearity and to reduce the computational complexity as compared to the linear quadratic method, the controller is also derived using Lyapunov stability theory. The proposed controllers are tested for their effectiveness in reducing the orbit insertion errors as well as for disturbance rejection. The disturbances being considered are primarily due to the eccentricity of Earth’s orbit around the Sun, solar radiation pressure, and the gravitational pull of the Moon. The simulation results are presented to delineate the performances of the proposed controllers. The superiority of a Lyapunov theory-based controller over the LQR-based controllers is demonstrated.</description><subject>Control stability</subject><subject>Controllers</subject><subject>Equations of motion</subject><subject>Lagrangian equilibrium points</subject><subject>Maintenance</subject><subject>Moon</subject><subject>Optimal control</subject><subject>Orbit insertion</subject><subject>Radiation pressure</subject><subject>Riccati equation</subject><subject>Solar radiation</subject><subject>Technical Papers</subject><subject>Three body problem</subject><subject>Tracking problem</subject><issn>0893-1321</issn><issn>1943-5525</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWD_-Q9CLHrbmY7Mf3kqpVqhUWHsO025iV9akJllh_71ZWvXkZQaG95lhHoSuKBlTktG7m0k1nd1OqjEtU54IwcSYEEJ5Ro7Q6Hd2jEakKHlCOaOn6Mz795hJs5KNkJtDa_HSrZuAn6ExQRkwG4XB2c7UeEHxi41TbDUOW4WrziQzcGGLq94H9YFXvjFveLkLzQe0eGpNcLbFMKA97Dpjv3AVYN20Tejx61ZZ11-gEw2tV5eHfo5WD7PX6TxZLB-fppNFArRgNAGdrWtRKE6E5rooCBFU5wVLIYUcNKm5KGnNOdFM57VQPOOqXBO2YYRCGV8_R9f7vTtnPzvlg3y3nTPxpGQiT0WexTMxdb9PbZz13iktdy7-4npJiRwcSzk4jkUOPuXgUx4cRzjbw-A36m_9D_k_-A1UG3_K</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Ramteke, Vivek</creator><creator>Kumar, Shashi Ranjan</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1582-4590</orcidid><orcidid>https://orcid.org/0000-0001-6446-7281</orcidid></search><sort><creationdate>20220101</creationdate><title>Halo Orbit Maintenance around L1 Point of the Sun-Earth System Using Optimal Control and Lyapunov Stability Theory</title><author>Ramteke, Vivek ; Kumar, Shashi Ranjan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a1821-af6bd58e305f3f880051f7824a4a7af0d3591d330f2f7d5e363e9b02c201a9943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Control stability</topic><topic>Controllers</topic><topic>Equations of motion</topic><topic>Lagrangian equilibrium points</topic><topic>Maintenance</topic><topic>Moon</topic><topic>Optimal control</topic><topic>Orbit insertion</topic><topic>Radiation pressure</topic><topic>Riccati equation</topic><topic>Solar radiation</topic><topic>Technical Papers</topic><topic>Three body problem</topic><topic>Tracking problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramteke, Vivek</creatorcontrib><creatorcontrib>Kumar, Shashi Ranjan</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of aerospace engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramteke, Vivek</au><au>Kumar, Shashi Ranjan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Halo Orbit Maintenance around L1 Point of the Sun-Earth System Using Optimal Control and Lyapunov Stability Theory</atitle><jtitle>Journal of aerospace engineering</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>35</volume><issue>1</issue><issn>0893-1321</issn><eissn>1943-5525</eissn><abstract>AbstractThis paper addresses the maintenance of a halo orbit around the L1 point of the Sun-Earth system in a circular restricted three-body problem. To this effect, a trajectory tracking problem is formulated and solved by designing various controllers using the linear quadratic method and Lyapunov stability theory. The linear quadratic formulations are performed using two approaches: the first one linearizes the equations of motion at several operating points, while the second approach uses a state-dependent coefficient system matrix that requires solving the state-dependent Riccati equation (SDRE). To handle the nonlinearity and to reduce the computational complexity as compared to the linear quadratic method, the controller is also derived using Lyapunov stability theory. The proposed controllers are tested for their effectiveness in reducing the orbit insertion errors as well as for disturbance rejection. The disturbances being considered are primarily due to the eccentricity of Earth’s orbit around the Sun, solar radiation pressure, and the gravitational pull of the Moon. The simulation results are presented to delineate the performances of the proposed controllers. The superiority of a Lyapunov theory-based controller over the LQR-based controllers is demonstrated.</abstract><cop>New York</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)AS.1943-5525.0001360</doi><orcidid>https://orcid.org/0000-0003-1582-4590</orcidid><orcidid>https://orcid.org/0000-0001-6446-7281</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0893-1321
ispartof Journal of aerospace engineering, 2022-01, Vol.35 (1)
issn 0893-1321
1943-5525
language eng
recordid cdi_proquest_journals_2574576821
source American Society of Civil Engineers:NESLI2:Journals:2014
subjects Control stability
Controllers
Equations of motion
Lagrangian equilibrium points
Maintenance
Moon
Optimal control
Orbit insertion
Radiation pressure
Riccati equation
Solar radiation
Technical Papers
Three body problem
Tracking problem
title Halo Orbit Maintenance around L1 Point of the Sun-Earth System Using Optimal Control and Lyapunov Stability Theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T20%3A32%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Halo%20Orbit%20Maintenance%20around%20L1%20Point%20of%20the%20Sun-Earth%20System%20Using%20Optimal%20Control%20and%20Lyapunov%20Stability%20Theory&rft.jtitle=Journal%20of%20aerospace%20engineering&rft.au=Ramteke,%20Vivek&rft.date=2022-01-01&rft.volume=35&rft.issue=1&rft.issn=0893-1321&rft.eissn=1943-5525&rft_id=info:doi/10.1061/(ASCE)AS.1943-5525.0001360&rft_dat=%3Cproquest_cross%3E2574576821%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2574576821&rft_id=info:pmid/&rfr_iscdi=true