Asymptotic formula for the Riesz means of the spectral functions of Laplace-Beltrami operator on unit sphere

The mathematical models of the heat and mass transfer processes on the ball type solids can be solved using the theory of convergence of Fourier-Laplace series on unit sphere. Many interesting models have divergent Fourier-Laplace series, which can be made convergent by introducing Riesz and Cesaro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2017-09, Vol.890 (1), p.12117
Hauptverfasser: Nurullah Rasedee, Ahmad Fadly, Ahmedov, Anvarjon, Abdul Sathar, Mohammad Hasan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12117
container_title Journal of physics. Conference series
container_volume 890
creator Nurullah Rasedee, Ahmad Fadly
Ahmedov, Anvarjon
Abdul Sathar, Mohammad Hasan
description The mathematical models of the heat and mass transfer processes on the ball type solids can be solved using the theory of convergence of Fourier-Laplace series on unit sphere. Many interesting models have divergent Fourier-Laplace series, which can be made convergent by introducing Riesz and Cesaro means of the series. Partial sums of the Fourier-Laplace series summed by Riesz method are integral operators with the kernel known as Riesz means of the spectral function. In order to obtain the convergence results for the partial sums by Riesz means we need to know an asymptotic behavior of the latter kernel. In this work the estimations for Riesz means of spectral function of Laplace-Beltrami operator which guarantees the convergence of the Fourier-Laplace series by Riesz method are obtained.
doi_str_mv 10.1088/1742-6596/890/1/012117
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2574567672</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2574567672</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-e9c9164a7da01044bbb77f7171030bc8544804877fb1225ede91aa747279cccf3</originalsourceid><addsrcrecordid>eNqFkEFLxDAQhYMouK7-BQl4rs2kaZMe10VXYUEQPYc0m7Jd2qYm6WH99aZW1qNzmWHevDfwIXQL5B6IEClwRpMiL4tUlCSFlAAF4GdocRLOT7MQl-jK-wMhWSy-QO3KH7sh2NBoXFvXja2aOg57g98a479wZ1Tvsa1_Vn4wOjjV4nrsdWjsrGzV0CptkgfTRrFrsB2MUyHG2B6PfROib2-cuUYXtWq9ufntS_Tx9Pi-fk62r5uX9Wqb6IxCSEypSyiY4jtFgDBWVRXnNQcOJCOVFjljgjARdxVQmpudKUEpzjjlpda6zpbobs4dnP0cjQ_yYEfXx5eS5pzlBS84jVfFfKWd9d6ZWg6u6ZQ7SiByIisnaHICKCNZCXImG410NjZ2-Ev-x_QNuPB7TQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2574567672</pqid></control><display><type>article</type><title>Asymptotic formula for the Riesz means of the spectral functions of Laplace-Beltrami operator on unit sphere</title><source>IOP Publishing Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Nurullah Rasedee, Ahmad Fadly ; Ahmedov, Anvarjon ; Abdul Sathar, Mohammad Hasan</creator><creatorcontrib>Nurullah Rasedee, Ahmad Fadly ; Ahmedov, Anvarjon ; Abdul Sathar, Mohammad Hasan</creatorcontrib><description>The mathematical models of the heat and mass transfer processes on the ball type solids can be solved using the theory of convergence of Fourier-Laplace series on unit sphere. Many interesting models have divergent Fourier-Laplace series, which can be made convergent by introducing Riesz and Cesaro means of the series. Partial sums of the Fourier-Laplace series summed by Riesz method are integral operators with the kernel known as Riesz means of the spectral function. In order to obtain the convergence results for the partial sums by Riesz means we need to know an asymptotic behavior of the latter kernel. In this work the estimations for Riesz means of spectral function of Laplace-Beltrami operator which guarantees the convergence of the Fourier-Laplace series by Riesz method are obtained.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/890/1/012117</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Asymptotic properties ; Convergence ; Fourier series ; Heat transfer ; Kernels ; Mass transfer ; Mathematical analysis ; Mathematical models ; Operators (mathematics) ; Physics ; Spectra ; Sums</subject><ispartof>Journal of physics. Conference series, 2017-09, Vol.890 (1), p.12117</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c321t-e9c9164a7da01044bbb77f7171030bc8544804877fb1225ede91aa747279cccf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/890/1/012117/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27923,27924,38867,38889,53839,53866</link.rule.ids></links><search><creatorcontrib>Nurullah Rasedee, Ahmad Fadly</creatorcontrib><creatorcontrib>Ahmedov, Anvarjon</creatorcontrib><creatorcontrib>Abdul Sathar, Mohammad Hasan</creatorcontrib><title>Asymptotic formula for the Riesz means of the spectral functions of Laplace-Beltrami operator on unit sphere</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>The mathematical models of the heat and mass transfer processes on the ball type solids can be solved using the theory of convergence of Fourier-Laplace series on unit sphere. Many interesting models have divergent Fourier-Laplace series, which can be made convergent by introducing Riesz and Cesaro means of the series. Partial sums of the Fourier-Laplace series summed by Riesz method are integral operators with the kernel known as Riesz means of the spectral function. In order to obtain the convergence results for the partial sums by Riesz means we need to know an asymptotic behavior of the latter kernel. In this work the estimations for Riesz means of spectral function of Laplace-Beltrami operator which guarantees the convergence of the Fourier-Laplace series by Riesz method are obtained.</description><subject>Asymptotic properties</subject><subject>Convergence</subject><subject>Fourier series</subject><subject>Heat transfer</subject><subject>Kernels</subject><subject>Mass transfer</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Operators (mathematics)</subject><subject>Physics</subject><subject>Spectra</subject><subject>Sums</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkEFLxDAQhYMouK7-BQl4rs2kaZMe10VXYUEQPYc0m7Jd2qYm6WH99aZW1qNzmWHevDfwIXQL5B6IEClwRpMiL4tUlCSFlAAF4GdocRLOT7MQl-jK-wMhWSy-QO3KH7sh2NBoXFvXja2aOg57g98a479wZ1Tvsa1_Vn4wOjjV4nrsdWjsrGzV0CptkgfTRrFrsB2MUyHG2B6PfROib2-cuUYXtWq9ufntS_Tx9Pi-fk62r5uX9Wqb6IxCSEypSyiY4jtFgDBWVRXnNQcOJCOVFjljgjARdxVQmpudKUEpzjjlpda6zpbobs4dnP0cjQ_yYEfXx5eS5pzlBS84jVfFfKWd9d6ZWg6u6ZQ7SiByIisnaHICKCNZCXImG410NjZ2-Ev-x_QNuPB7TQ</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Nurullah Rasedee, Ahmad Fadly</creator><creator>Ahmedov, Anvarjon</creator><creator>Abdul Sathar, Mohammad Hasan</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20170901</creationdate><title>Asymptotic formula for the Riesz means of the spectral functions of Laplace-Beltrami operator on unit sphere</title><author>Nurullah Rasedee, Ahmad Fadly ; Ahmedov, Anvarjon ; Abdul Sathar, Mohammad Hasan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-e9c9164a7da01044bbb77f7171030bc8544804877fb1225ede91aa747279cccf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Asymptotic properties</topic><topic>Convergence</topic><topic>Fourier series</topic><topic>Heat transfer</topic><topic>Kernels</topic><topic>Mass transfer</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Operators (mathematics)</topic><topic>Physics</topic><topic>Spectra</topic><topic>Sums</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nurullah Rasedee, Ahmad Fadly</creatorcontrib><creatorcontrib>Ahmedov, Anvarjon</creatorcontrib><creatorcontrib>Abdul Sathar, Mohammad Hasan</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nurullah Rasedee, Ahmad Fadly</au><au>Ahmedov, Anvarjon</au><au>Abdul Sathar, Mohammad Hasan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic formula for the Riesz means of the spectral functions of Laplace-Beltrami operator on unit sphere</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2017-09-01</date><risdate>2017</risdate><volume>890</volume><issue>1</issue><spage>12117</spage><pages>12117-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>The mathematical models of the heat and mass transfer processes on the ball type solids can be solved using the theory of convergence of Fourier-Laplace series on unit sphere. Many interesting models have divergent Fourier-Laplace series, which can be made convergent by introducing Riesz and Cesaro means of the series. Partial sums of the Fourier-Laplace series summed by Riesz method are integral operators with the kernel known as Riesz means of the spectral function. In order to obtain the convergence results for the partial sums by Riesz means we need to know an asymptotic behavior of the latter kernel. In this work the estimations for Riesz means of spectral function of Laplace-Beltrami operator which guarantees the convergence of the Fourier-Laplace series by Riesz method are obtained.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/890/1/012117</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2017-09, Vol.890 (1), p.12117
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2574567672
source IOP Publishing Free Content; EZB-FREE-00999 freely available EZB journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Asymptotic properties
Convergence
Fourier series
Heat transfer
Kernels
Mass transfer
Mathematical analysis
Mathematical models
Operators (mathematics)
Physics
Spectra
Sums
title Asymptotic formula for the Riesz means of the spectral functions of Laplace-Beltrami operator on unit sphere
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A17%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20formula%20for%20the%20Riesz%20means%20of%20the%20spectral%20functions%20of%20Laplace-Beltrami%20operator%20on%20unit%20sphere&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Nurullah%20Rasedee,%20Ahmad%20Fadly&rft.date=2017-09-01&rft.volume=890&rft.issue=1&rft.spage=12117&rft.pages=12117-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/890/1/012117&rft_dat=%3Cproquest_iop_j%3E2574567672%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2574567672&rft_id=info:pmid/&rfr_iscdi=true