Asymptotic formula for the Riesz means of the spectral functions of Laplace-Beltrami operator on unit sphere
The mathematical models of the heat and mass transfer processes on the ball type solids can be solved using the theory of convergence of Fourier-Laplace series on unit sphere. Many interesting models have divergent Fourier-Laplace series, which can be made convergent by introducing Riesz and Cesaro...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2017-09, Vol.890 (1), p.12117 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12117 |
container_title | Journal of physics. Conference series |
container_volume | 890 |
creator | Nurullah Rasedee, Ahmad Fadly Ahmedov, Anvarjon Abdul Sathar, Mohammad Hasan |
description | The mathematical models of the heat and mass transfer processes on the ball type solids can be solved using the theory of convergence of Fourier-Laplace series on unit sphere. Many interesting models have divergent Fourier-Laplace series, which can be made convergent by introducing Riesz and Cesaro means of the series. Partial sums of the Fourier-Laplace series summed by Riesz method are integral operators with the kernel known as Riesz means of the spectral function. In order to obtain the convergence results for the partial sums by Riesz means we need to know an asymptotic behavior of the latter kernel. In this work the estimations for Riesz means of spectral function of Laplace-Beltrami operator which guarantees the convergence of the Fourier-Laplace series by Riesz method are obtained. |
doi_str_mv | 10.1088/1742-6596/890/1/012117 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2574567672</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2574567672</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-e9c9164a7da01044bbb77f7171030bc8544804877fb1225ede91aa747279cccf3</originalsourceid><addsrcrecordid>eNqFkEFLxDAQhYMouK7-BQl4rs2kaZMe10VXYUEQPYc0m7Jd2qYm6WH99aZW1qNzmWHevDfwIXQL5B6IEClwRpMiL4tUlCSFlAAF4GdocRLOT7MQl-jK-wMhWSy-QO3KH7sh2NBoXFvXja2aOg57g98a479wZ1Tvsa1_Vn4wOjjV4nrsdWjsrGzV0CptkgfTRrFrsB2MUyHG2B6PfROib2-cuUYXtWq9ufntS_Tx9Pi-fk62r5uX9Wqb6IxCSEypSyiY4jtFgDBWVRXnNQcOJCOVFjljgjARdxVQmpudKUEpzjjlpda6zpbobs4dnP0cjQ_yYEfXx5eS5pzlBS84jVfFfKWd9d6ZWg6u6ZQ7SiByIisnaHICKCNZCXImG410NjZ2-Ev-x_QNuPB7TQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2574567672</pqid></control><display><type>article</type><title>Asymptotic formula for the Riesz means of the spectral functions of Laplace-Beltrami operator on unit sphere</title><source>IOP Publishing Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Nurullah Rasedee, Ahmad Fadly ; Ahmedov, Anvarjon ; Abdul Sathar, Mohammad Hasan</creator><creatorcontrib>Nurullah Rasedee, Ahmad Fadly ; Ahmedov, Anvarjon ; Abdul Sathar, Mohammad Hasan</creatorcontrib><description>The mathematical models of the heat and mass transfer processes on the ball type solids can be solved using the theory of convergence of Fourier-Laplace series on unit sphere. Many interesting models have divergent Fourier-Laplace series, which can be made convergent by introducing Riesz and Cesaro means of the series. Partial sums of the Fourier-Laplace series summed by Riesz method are integral operators with the kernel known as Riesz means of the spectral function. In order to obtain the convergence results for the partial sums by Riesz means we need to know an asymptotic behavior of the latter kernel. In this work the estimations for Riesz means of spectral function of Laplace-Beltrami operator which guarantees the convergence of the Fourier-Laplace series by Riesz method are obtained.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/890/1/012117</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Asymptotic properties ; Convergence ; Fourier series ; Heat transfer ; Kernels ; Mass transfer ; Mathematical analysis ; Mathematical models ; Operators (mathematics) ; Physics ; Spectra ; Sums</subject><ispartof>Journal of physics. Conference series, 2017-09, Vol.890 (1), p.12117</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c321t-e9c9164a7da01044bbb77f7171030bc8544804877fb1225ede91aa747279cccf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/890/1/012117/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27923,27924,38867,38889,53839,53866</link.rule.ids></links><search><creatorcontrib>Nurullah Rasedee, Ahmad Fadly</creatorcontrib><creatorcontrib>Ahmedov, Anvarjon</creatorcontrib><creatorcontrib>Abdul Sathar, Mohammad Hasan</creatorcontrib><title>Asymptotic formula for the Riesz means of the spectral functions of Laplace-Beltrami operator on unit sphere</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>The mathematical models of the heat and mass transfer processes on the ball type solids can be solved using the theory of convergence of Fourier-Laplace series on unit sphere. Many interesting models have divergent Fourier-Laplace series, which can be made convergent by introducing Riesz and Cesaro means of the series. Partial sums of the Fourier-Laplace series summed by Riesz method are integral operators with the kernel known as Riesz means of the spectral function. In order to obtain the convergence results for the partial sums by Riesz means we need to know an asymptotic behavior of the latter kernel. In this work the estimations for Riesz means of spectral function of Laplace-Beltrami operator which guarantees the convergence of the Fourier-Laplace series by Riesz method are obtained.</description><subject>Asymptotic properties</subject><subject>Convergence</subject><subject>Fourier series</subject><subject>Heat transfer</subject><subject>Kernels</subject><subject>Mass transfer</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Operators (mathematics)</subject><subject>Physics</subject><subject>Spectra</subject><subject>Sums</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkEFLxDAQhYMouK7-BQl4rs2kaZMe10VXYUEQPYc0m7Jd2qYm6WH99aZW1qNzmWHevDfwIXQL5B6IEClwRpMiL4tUlCSFlAAF4GdocRLOT7MQl-jK-wMhWSy-QO3KH7sh2NBoXFvXja2aOg57g98a479wZ1Tvsa1_Vn4wOjjV4nrsdWjsrGzV0CptkgfTRrFrsB2MUyHG2B6PfROib2-cuUYXtWq9ufntS_Tx9Pi-fk62r5uX9Wqb6IxCSEypSyiY4jtFgDBWVRXnNQcOJCOVFjljgjARdxVQmpudKUEpzjjlpda6zpbobs4dnP0cjQ_yYEfXx5eS5pzlBS84jVfFfKWd9d6ZWg6u6ZQ7SiByIisnaHICKCNZCXImG410NjZ2-Ev-x_QNuPB7TQ</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Nurullah Rasedee, Ahmad Fadly</creator><creator>Ahmedov, Anvarjon</creator><creator>Abdul Sathar, Mohammad Hasan</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20170901</creationdate><title>Asymptotic formula for the Riesz means of the spectral functions of Laplace-Beltrami operator on unit sphere</title><author>Nurullah Rasedee, Ahmad Fadly ; Ahmedov, Anvarjon ; Abdul Sathar, Mohammad Hasan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-e9c9164a7da01044bbb77f7171030bc8544804877fb1225ede91aa747279cccf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Asymptotic properties</topic><topic>Convergence</topic><topic>Fourier series</topic><topic>Heat transfer</topic><topic>Kernels</topic><topic>Mass transfer</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Operators (mathematics)</topic><topic>Physics</topic><topic>Spectra</topic><topic>Sums</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nurullah Rasedee, Ahmad Fadly</creatorcontrib><creatorcontrib>Ahmedov, Anvarjon</creatorcontrib><creatorcontrib>Abdul Sathar, Mohammad Hasan</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nurullah Rasedee, Ahmad Fadly</au><au>Ahmedov, Anvarjon</au><au>Abdul Sathar, Mohammad Hasan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic formula for the Riesz means of the spectral functions of Laplace-Beltrami operator on unit sphere</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2017-09-01</date><risdate>2017</risdate><volume>890</volume><issue>1</issue><spage>12117</spage><pages>12117-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>The mathematical models of the heat and mass transfer processes on the ball type solids can be solved using the theory of convergence of Fourier-Laplace series on unit sphere. Many interesting models have divergent Fourier-Laplace series, which can be made convergent by introducing Riesz and Cesaro means of the series. Partial sums of the Fourier-Laplace series summed by Riesz method are integral operators with the kernel known as Riesz means of the spectral function. In order to obtain the convergence results for the partial sums by Riesz means we need to know an asymptotic behavior of the latter kernel. In this work the estimations for Riesz means of spectral function of Laplace-Beltrami operator which guarantees the convergence of the Fourier-Laplace series by Riesz method are obtained.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/890/1/012117</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2017-09, Vol.890 (1), p.12117 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2574567672 |
source | IOP Publishing Free Content; EZB-FREE-00999 freely available EZB journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Asymptotic properties Convergence Fourier series Heat transfer Kernels Mass transfer Mathematical analysis Mathematical models Operators (mathematics) Physics Spectra Sums |
title | Asymptotic formula for the Riesz means of the spectral functions of Laplace-Beltrami operator on unit sphere |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A17%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20formula%20for%20the%20Riesz%20means%20of%20the%20spectral%20functions%20of%20Laplace-Beltrami%20operator%20on%20unit%20sphere&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Nurullah%20Rasedee,%20Ahmad%20Fadly&rft.date=2017-09-01&rft.volume=890&rft.issue=1&rft.spage=12117&rft.pages=12117-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/890/1/012117&rft_dat=%3Cproquest_iop_j%3E2574567672%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2574567672&rft_id=info:pmid/&rfr_iscdi=true |