On boundary conditions in liquid sodium convective experiments
Turbulent convection of liquid sodium in a cylindrical cell, heated at one end face and cooled at the other, inclined to the vertical at angle 0 and π/4 is studied experimentally and numerically by solving the Oberbeck-Boussinesq equations with the LES (Large Eddy Simulation) approach for small-scal...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2017-11, Vol.891 (1), p.12075 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12075 |
container_title | Journal of physics. Conference series |
container_volume | 891 |
creator | Kolesnichenko, I Khalilov, R Teimurazov, A Frick, P |
description | Turbulent convection of liquid sodium in a cylindrical cell, heated at one end face and cooled at the other, inclined to the vertical at angle 0 and π/4 is studied experimentally and numerically by solving the Oberbeck-Boussinesq equations with the LES (Large Eddy Simulation) approach for small-scale turbulence. The aspect ratio is one, i.e. cylinder length is equal to diameter L = D = 200 mm. The simulations were done using fixed heat flux thermal boundary conditions for the cylinder faces. To resolve the general problem of boundary condition in convective experiment with low Prandtl number liquids, a special kind of heat exchanger were designed for the experimental setup. Each heat exchanger is a temperature-controlled MHD (magnetohydrodynamic) stirrer, filled with sodium and separated from the convective cell by a thin copper plate. We demonstrate the efficiency of MHD stirring for the temperature control. In convective experiments the Rayleigh number, determined by the cylinder diameter, was in the range from 4.7 · 106 to 1.7 · 107. We show that the structure of the flow and the efficient heat transfer strongly depend on the inclination angle. |
doi_str_mv | 10.1088/1742-6596/891/1/012075 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2574565112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2574565112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-69a28220f369c0cfcecf6ff60628817308e8cf63bd445f4015a611d7524724c53</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKd_QQpeeVGbpPnqjSDD-cFggnodunxAxpZ0TTv035tSmQiC5yaHnPd9T_IAcIngDYJCFIgTnDNasUJUqEAFRBhyegQmh8HxoRfiFJzFuIawTMUn4Hbps1Xova7bz0wFr13ngo-Z89nG7Xqnsxi067fDbG9U5_YmMx-Nad3W-C6egxNbb6K5-D6n4H1-_zZ7zBfLh6fZ3SJXBIouZ1WNBcbQlqxSUFlllGXWMsiwEIiXUBiRbsqVJoRaAhGtGUKaU0w4JoqWU3A15jZt2PUmdnId-tanlRJTTiijCOGkYqNKtSHG1ljZpHemn0kE5cBKDhjkgEQmVhLJkVUy4tHoQvOT_K_p-g_T88vs9ZdONtqWX7Ikd88</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2574565112</pqid></control><display><type>article</type><title>On boundary conditions in liquid sodium convective experiments</title><source>Institute of Physics IOPscience extra</source><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Kolesnichenko, I ; Khalilov, R ; Teimurazov, A ; Frick, P</creator><creatorcontrib>Kolesnichenko, I ; Khalilov, R ; Teimurazov, A ; Frick, P</creatorcontrib><description>Turbulent convection of liquid sodium in a cylindrical cell, heated at one end face and cooled at the other, inclined to the vertical at angle 0 and π/4 is studied experimentally and numerically by solving the Oberbeck-Boussinesq equations with the LES (Large Eddy Simulation) approach for small-scale turbulence. The aspect ratio is one, i.e. cylinder length is equal to diameter L = D = 200 mm. The simulations were done using fixed heat flux thermal boundary conditions for the cylinder faces. To resolve the general problem of boundary condition in convective experiment with low Prandtl number liquids, a special kind of heat exchanger were designed for the experimental setup. Each heat exchanger is a temperature-controlled MHD (magnetohydrodynamic) stirrer, filled with sodium and separated from the convective cell by a thin copper plate. We demonstrate the efficiency of MHD stirring for the temperature control. In convective experiments the Rayleigh number, determined by the cylinder diameter, was in the range from 4.7 · 106 to 1.7 · 107. We show that the structure of the flow and the efficient heat transfer strongly depend on the inclination angle.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/891/1/012075</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Aspect ratio ; Boundary conditions ; Boussinesq equations ; Cylinders ; Fluid flow ; Heat exchangers ; Heat flux ; Inclination angle ; Large eddy simulation ; Liquid sodium ; Magnetohydrodynamic turbulence ; Magnetohydrodynamics ; Metal plates ; Physics ; Prandtl number ; Sodium ; Temperature control</subject><ispartof>Journal of physics. Conference series, 2017-11, Vol.891 (1), p.12075</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-69a28220f369c0cfcecf6ff60628817308e8cf63bd445f4015a611d7524724c53</citedby><cites>FETCH-LOGICAL-c408t-69a28220f369c0cfcecf6ff60628817308e8cf63bd445f4015a611d7524724c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/891/1/012075/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,38845,38867,53815,53842</link.rule.ids></links><search><creatorcontrib>Kolesnichenko, I</creatorcontrib><creatorcontrib>Khalilov, R</creatorcontrib><creatorcontrib>Teimurazov, A</creatorcontrib><creatorcontrib>Frick, P</creatorcontrib><title>On boundary conditions in liquid sodium convective experiments</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>Turbulent convection of liquid sodium in a cylindrical cell, heated at one end face and cooled at the other, inclined to the vertical at angle 0 and π/4 is studied experimentally and numerically by solving the Oberbeck-Boussinesq equations with the LES (Large Eddy Simulation) approach for small-scale turbulence. The aspect ratio is one, i.e. cylinder length is equal to diameter L = D = 200 mm. The simulations were done using fixed heat flux thermal boundary conditions for the cylinder faces. To resolve the general problem of boundary condition in convective experiment with low Prandtl number liquids, a special kind of heat exchanger were designed for the experimental setup. Each heat exchanger is a temperature-controlled MHD (magnetohydrodynamic) stirrer, filled with sodium and separated from the convective cell by a thin copper plate. We demonstrate the efficiency of MHD stirring for the temperature control. In convective experiments the Rayleigh number, determined by the cylinder diameter, was in the range from 4.7 · 106 to 1.7 · 107. We show that the structure of the flow and the efficient heat transfer strongly depend on the inclination angle.</description><subject>Aspect ratio</subject><subject>Boundary conditions</subject><subject>Boussinesq equations</subject><subject>Cylinders</subject><subject>Fluid flow</subject><subject>Heat exchangers</subject><subject>Heat flux</subject><subject>Inclination angle</subject><subject>Large eddy simulation</subject><subject>Liquid sodium</subject><subject>Magnetohydrodynamic turbulence</subject><subject>Magnetohydrodynamics</subject><subject>Metal plates</subject><subject>Physics</subject><subject>Prandtl number</subject><subject>Sodium</subject><subject>Temperature control</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkF1LwzAUhoMoOKd_QQpeeVGbpPnqjSDD-cFggnodunxAxpZ0TTv035tSmQiC5yaHnPd9T_IAcIngDYJCFIgTnDNasUJUqEAFRBhyegQmh8HxoRfiFJzFuIawTMUn4Hbps1Xova7bz0wFr13ngo-Z89nG7Xqnsxi067fDbG9U5_YmMx-Nad3W-C6egxNbb6K5-D6n4H1-_zZ7zBfLh6fZ3SJXBIouZ1WNBcbQlqxSUFlllGXWMsiwEIiXUBiRbsqVJoRaAhGtGUKaU0w4JoqWU3A15jZt2PUmdnId-tanlRJTTiijCOGkYqNKtSHG1ljZpHemn0kE5cBKDhjkgEQmVhLJkVUy4tHoQvOT_K_p-g_T88vs9ZdONtqWX7Ikd88</recordid><startdate>20171110</startdate><enddate>20171110</enddate><creator>Kolesnichenko, I</creator><creator>Khalilov, R</creator><creator>Teimurazov, A</creator><creator>Frick, P</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20171110</creationdate><title>On boundary conditions in liquid sodium convective experiments</title><author>Kolesnichenko, I ; Khalilov, R ; Teimurazov, A ; Frick, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-69a28220f369c0cfcecf6ff60628817308e8cf63bd445f4015a611d7524724c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aspect ratio</topic><topic>Boundary conditions</topic><topic>Boussinesq equations</topic><topic>Cylinders</topic><topic>Fluid flow</topic><topic>Heat exchangers</topic><topic>Heat flux</topic><topic>Inclination angle</topic><topic>Large eddy simulation</topic><topic>Liquid sodium</topic><topic>Magnetohydrodynamic turbulence</topic><topic>Magnetohydrodynamics</topic><topic>Metal plates</topic><topic>Physics</topic><topic>Prandtl number</topic><topic>Sodium</topic><topic>Temperature control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kolesnichenko, I</creatorcontrib><creatorcontrib>Khalilov, R</creatorcontrib><creatorcontrib>Teimurazov, A</creatorcontrib><creatorcontrib>Frick, P</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kolesnichenko, I</au><au>Khalilov, R</au><au>Teimurazov, A</au><au>Frick, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On boundary conditions in liquid sodium convective experiments</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2017-11-10</date><risdate>2017</risdate><volume>891</volume><issue>1</issue><spage>12075</spage><pages>12075-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>Turbulent convection of liquid sodium in a cylindrical cell, heated at one end face and cooled at the other, inclined to the vertical at angle 0 and π/4 is studied experimentally and numerically by solving the Oberbeck-Boussinesq equations with the LES (Large Eddy Simulation) approach for small-scale turbulence. The aspect ratio is one, i.e. cylinder length is equal to diameter L = D = 200 mm. The simulations were done using fixed heat flux thermal boundary conditions for the cylinder faces. To resolve the general problem of boundary condition in convective experiment with low Prandtl number liquids, a special kind of heat exchanger were designed for the experimental setup. Each heat exchanger is a temperature-controlled MHD (magnetohydrodynamic) stirrer, filled with sodium and separated from the convective cell by a thin copper plate. We demonstrate the efficiency of MHD stirring for the temperature control. In convective experiments the Rayleigh number, determined by the cylinder diameter, was in the range from 4.7 · 106 to 1.7 · 107. We show that the structure of the flow and the efficient heat transfer strongly depend on the inclination angle.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/891/1/012075</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2017-11, Vol.891 (1), p.12075 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2574565112 |
source | Institute of Physics IOPscience extra; IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Aspect ratio Boundary conditions Boussinesq equations Cylinders Fluid flow Heat exchangers Heat flux Inclination angle Large eddy simulation Liquid sodium Magnetohydrodynamic turbulence Magnetohydrodynamics Metal plates Physics Prandtl number Sodium Temperature control |
title | On boundary conditions in liquid sodium convective experiments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T10%3A40%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20boundary%20conditions%20in%20liquid%20sodium%20convective%20experiments&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Kolesnichenko,%20I&rft.date=2017-11-10&rft.volume=891&rft.issue=1&rft.spage=12075&rft.pages=12075-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/891/1/012075&rft_dat=%3Cproquest_iop_j%3E2574565112%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2574565112&rft_id=info:pmid/&rfr_iscdi=true |