On boundary conditions in liquid sodium convective experiments

Turbulent convection of liquid sodium in a cylindrical cell, heated at one end face and cooled at the other, inclined to the vertical at angle 0 and π/4 is studied experimentally and numerically by solving the Oberbeck-Boussinesq equations with the LES (Large Eddy Simulation) approach for small-scal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2017-11, Vol.891 (1), p.12075
Hauptverfasser: Kolesnichenko, I, Khalilov, R, Teimurazov, A, Frick, P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12075
container_title Journal of physics. Conference series
container_volume 891
creator Kolesnichenko, I
Khalilov, R
Teimurazov, A
Frick, P
description Turbulent convection of liquid sodium in a cylindrical cell, heated at one end face and cooled at the other, inclined to the vertical at angle 0 and π/4 is studied experimentally and numerically by solving the Oberbeck-Boussinesq equations with the LES (Large Eddy Simulation) approach for small-scale turbulence. The aspect ratio is one, i.e. cylinder length is equal to diameter L = D = 200 mm. The simulations were done using fixed heat flux thermal boundary conditions for the cylinder faces. To resolve the general problem of boundary condition in convective experiment with low Prandtl number liquids, a special kind of heat exchanger were designed for the experimental setup. Each heat exchanger is a temperature-controlled MHD (magnetohydrodynamic) stirrer, filled with sodium and separated from the convective cell by a thin copper plate. We demonstrate the efficiency of MHD stirring for the temperature control. In convective experiments the Rayleigh number, determined by the cylinder diameter, was in the range from 4.7 · 106 to 1.7 · 107. We show that the structure of the flow and the efficient heat transfer strongly depend on the inclination angle.
doi_str_mv 10.1088/1742-6596/891/1/012075
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2574565112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2574565112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-69a28220f369c0cfcecf6ff60628817308e8cf63bd445f4015a611d7524724c53</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKd_QQpeeVGbpPnqjSDD-cFggnodunxAxpZ0TTv035tSmQiC5yaHnPd9T_IAcIngDYJCFIgTnDNasUJUqEAFRBhyegQmh8HxoRfiFJzFuIawTMUn4Hbps1Xova7bz0wFr13ngo-Z89nG7Xqnsxi067fDbG9U5_YmMx-Nad3W-C6egxNbb6K5-D6n4H1-_zZ7zBfLh6fZ3SJXBIouZ1WNBcbQlqxSUFlllGXWMsiwEIiXUBiRbsqVJoRaAhGtGUKaU0w4JoqWU3A15jZt2PUmdnId-tanlRJTTiijCOGkYqNKtSHG1ljZpHemn0kE5cBKDhjkgEQmVhLJkVUy4tHoQvOT_K_p-g_T88vs9ZdONtqWX7Ikd88</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2574565112</pqid></control><display><type>article</type><title>On boundary conditions in liquid sodium convective experiments</title><source>Institute of Physics IOPscience extra</source><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Kolesnichenko, I ; Khalilov, R ; Teimurazov, A ; Frick, P</creator><creatorcontrib>Kolesnichenko, I ; Khalilov, R ; Teimurazov, A ; Frick, P</creatorcontrib><description>Turbulent convection of liquid sodium in a cylindrical cell, heated at one end face and cooled at the other, inclined to the vertical at angle 0 and π/4 is studied experimentally and numerically by solving the Oberbeck-Boussinesq equations with the LES (Large Eddy Simulation) approach for small-scale turbulence. The aspect ratio is one, i.e. cylinder length is equal to diameter L = D = 200 mm. The simulations were done using fixed heat flux thermal boundary conditions for the cylinder faces. To resolve the general problem of boundary condition in convective experiment with low Prandtl number liquids, a special kind of heat exchanger were designed for the experimental setup. Each heat exchanger is a temperature-controlled MHD (magnetohydrodynamic) stirrer, filled with sodium and separated from the convective cell by a thin copper plate. We demonstrate the efficiency of MHD stirring for the temperature control. In convective experiments the Rayleigh number, determined by the cylinder diameter, was in the range from 4.7 · 106 to 1.7 · 107. We show that the structure of the flow and the efficient heat transfer strongly depend on the inclination angle.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/891/1/012075</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Aspect ratio ; Boundary conditions ; Boussinesq equations ; Cylinders ; Fluid flow ; Heat exchangers ; Heat flux ; Inclination angle ; Large eddy simulation ; Liquid sodium ; Magnetohydrodynamic turbulence ; Magnetohydrodynamics ; Metal plates ; Physics ; Prandtl number ; Sodium ; Temperature control</subject><ispartof>Journal of physics. Conference series, 2017-11, Vol.891 (1), p.12075</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-69a28220f369c0cfcecf6ff60628817308e8cf63bd445f4015a611d7524724c53</citedby><cites>FETCH-LOGICAL-c408t-69a28220f369c0cfcecf6ff60628817308e8cf63bd445f4015a611d7524724c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/891/1/012075/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,38845,38867,53815,53842</link.rule.ids></links><search><creatorcontrib>Kolesnichenko, I</creatorcontrib><creatorcontrib>Khalilov, R</creatorcontrib><creatorcontrib>Teimurazov, A</creatorcontrib><creatorcontrib>Frick, P</creatorcontrib><title>On boundary conditions in liquid sodium convective experiments</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>Turbulent convection of liquid sodium in a cylindrical cell, heated at one end face and cooled at the other, inclined to the vertical at angle 0 and π/4 is studied experimentally and numerically by solving the Oberbeck-Boussinesq equations with the LES (Large Eddy Simulation) approach for small-scale turbulence. The aspect ratio is one, i.e. cylinder length is equal to diameter L = D = 200 mm. The simulations were done using fixed heat flux thermal boundary conditions for the cylinder faces. To resolve the general problem of boundary condition in convective experiment with low Prandtl number liquids, a special kind of heat exchanger were designed for the experimental setup. Each heat exchanger is a temperature-controlled MHD (magnetohydrodynamic) stirrer, filled with sodium and separated from the convective cell by a thin copper plate. We demonstrate the efficiency of MHD stirring for the temperature control. In convective experiments the Rayleigh number, determined by the cylinder diameter, was in the range from 4.7 · 106 to 1.7 · 107. We show that the structure of the flow and the efficient heat transfer strongly depend on the inclination angle.</description><subject>Aspect ratio</subject><subject>Boundary conditions</subject><subject>Boussinesq equations</subject><subject>Cylinders</subject><subject>Fluid flow</subject><subject>Heat exchangers</subject><subject>Heat flux</subject><subject>Inclination angle</subject><subject>Large eddy simulation</subject><subject>Liquid sodium</subject><subject>Magnetohydrodynamic turbulence</subject><subject>Magnetohydrodynamics</subject><subject>Metal plates</subject><subject>Physics</subject><subject>Prandtl number</subject><subject>Sodium</subject><subject>Temperature control</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkF1LwzAUhoMoOKd_QQpeeVGbpPnqjSDD-cFggnodunxAxpZ0TTv035tSmQiC5yaHnPd9T_IAcIngDYJCFIgTnDNasUJUqEAFRBhyegQmh8HxoRfiFJzFuIawTMUn4Hbps1Xova7bz0wFr13ngo-Z89nG7Xqnsxi067fDbG9U5_YmMx-Nad3W-C6egxNbb6K5-D6n4H1-_zZ7zBfLh6fZ3SJXBIouZ1WNBcbQlqxSUFlllGXWMsiwEIiXUBiRbsqVJoRaAhGtGUKaU0w4JoqWU3A15jZt2PUmdnId-tanlRJTTiijCOGkYqNKtSHG1ljZpHemn0kE5cBKDhjkgEQmVhLJkVUy4tHoQvOT_K_p-g_T88vs9ZdONtqWX7Ikd88</recordid><startdate>20171110</startdate><enddate>20171110</enddate><creator>Kolesnichenko, I</creator><creator>Khalilov, R</creator><creator>Teimurazov, A</creator><creator>Frick, P</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20171110</creationdate><title>On boundary conditions in liquid sodium convective experiments</title><author>Kolesnichenko, I ; Khalilov, R ; Teimurazov, A ; Frick, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-69a28220f369c0cfcecf6ff60628817308e8cf63bd445f4015a611d7524724c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aspect ratio</topic><topic>Boundary conditions</topic><topic>Boussinesq equations</topic><topic>Cylinders</topic><topic>Fluid flow</topic><topic>Heat exchangers</topic><topic>Heat flux</topic><topic>Inclination angle</topic><topic>Large eddy simulation</topic><topic>Liquid sodium</topic><topic>Magnetohydrodynamic turbulence</topic><topic>Magnetohydrodynamics</topic><topic>Metal plates</topic><topic>Physics</topic><topic>Prandtl number</topic><topic>Sodium</topic><topic>Temperature control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kolesnichenko, I</creatorcontrib><creatorcontrib>Khalilov, R</creatorcontrib><creatorcontrib>Teimurazov, A</creatorcontrib><creatorcontrib>Frick, P</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kolesnichenko, I</au><au>Khalilov, R</au><au>Teimurazov, A</au><au>Frick, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On boundary conditions in liquid sodium convective experiments</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2017-11-10</date><risdate>2017</risdate><volume>891</volume><issue>1</issue><spage>12075</spage><pages>12075-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>Turbulent convection of liquid sodium in a cylindrical cell, heated at one end face and cooled at the other, inclined to the vertical at angle 0 and π/4 is studied experimentally and numerically by solving the Oberbeck-Boussinesq equations with the LES (Large Eddy Simulation) approach for small-scale turbulence. The aspect ratio is one, i.e. cylinder length is equal to diameter L = D = 200 mm. The simulations were done using fixed heat flux thermal boundary conditions for the cylinder faces. To resolve the general problem of boundary condition in convective experiment with low Prandtl number liquids, a special kind of heat exchanger were designed for the experimental setup. Each heat exchanger is a temperature-controlled MHD (magnetohydrodynamic) stirrer, filled with sodium and separated from the convective cell by a thin copper plate. We demonstrate the efficiency of MHD stirring for the temperature control. In convective experiments the Rayleigh number, determined by the cylinder diameter, was in the range from 4.7 · 106 to 1.7 · 107. We show that the structure of the flow and the efficient heat transfer strongly depend on the inclination angle.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/891/1/012075</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2017-11, Vol.891 (1), p.12075
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2574565112
source Institute of Physics IOPscience extra; IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Aspect ratio
Boundary conditions
Boussinesq equations
Cylinders
Fluid flow
Heat exchangers
Heat flux
Inclination angle
Large eddy simulation
Liquid sodium
Magnetohydrodynamic turbulence
Magnetohydrodynamics
Metal plates
Physics
Prandtl number
Sodium
Temperature control
title On boundary conditions in liquid sodium convective experiments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T10%3A40%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20boundary%20conditions%20in%20liquid%20sodium%20convective%20experiments&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Kolesnichenko,%20I&rft.date=2017-11-10&rft.volume=891&rft.issue=1&rft.spage=12075&rft.pages=12075-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/891/1/012075&rft_dat=%3Cproquest_iop_j%3E2574565112%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2574565112&rft_id=info:pmid/&rfr_iscdi=true